Suppr超能文献

Hybrid polymer/lipid vesicle synthesis: Association between cationic liposomes and lipoplexes with chondroitin sulfate.

作者信息

Carvalho Bruna G, Garcia Bianca B M, Malfatti-Gasperini Antonio A, Han Sang W, de la Torre Lucimara G

机构信息

Department of Material and Bioprocess Engineering, School of Chemical Engineering, University of Campinas (UNICAMP), 13083-970 Campinas, Brazil.

Center for Cell Therapy and Molecular, Federal University of São Paulo (UNIFESP), 04044-010 São Paulo, Brazil.

出版信息

Colloids Surf B Biointerfaces. 2022 Feb;210:112233. doi: 10.1016/j.colsurfb.2021.112233. Epub 2021 Nov 19.

Abstract

The association of cationic carriers with different anionic mucoadhesive biopolymers has been widely explored as an alternative to improve their delivery routes and specific targeting. This work presents a complete analysis of the association between chondroitin sulfate (CS) and cationic liposomes (CLs)/lipoplex (CL-pDNA). In this study, plasmid DNA (pDNA) was used as a genetic cargo for association with carriers. Firstly, we measured the stoichiometry of pseudo complexes and evaluated their colloidal properties, structural and morphological characteristics. Optimized CL-pDNA lipoplexes (positive z-potential) and CL-CS / CL-pDNA-CS (negative z-potential with CS mass ratio of 9% (w/w)) were further studied in detail. Small-angle X-ray scattering analysis and cryo-transmission electron microscopy micrographs revealed that the electrostatic interaction between CS and CL / CL-pDNA easily reorganized the lipid bilayers resulting in nanoscale uni/multilamellar vesicles. A high CS mass ratio (9% (w/w)) led to the reassembly of liposomal structure, wherein the pDNA was easily exchanged for CS chains, forming more than 50% of dense multilamellar vesicles. This data evidenced that the association between CS and CLs is not a conventional coating process since it generates complex and hybrid structures. We believe that these obtained colloidal data may be used in the future to investigate polymer-tailored nanocarriers and their production process. In brief, the colloidal study of hybrid structures may open interesting perspectives for developing novel carriers for drug and gene delivery applications.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验