Aix-Marseille Univ, Univ. Gustave Eiffel, LBA, Marseille, France; iLab-Spine - Laboratoire international en Imagerie et Biomécanique du Rachis, Marseille, France.
Aix-Marseille Univ, Univ. Gustave Eiffel, LBA, Marseille, France; iLab-Spine - Laboratoire international en Imagerie et Biomécanique du Rachis, Marseille, France.
Acta Biomater. 2022 Mar 1;140:446-456. doi: 10.1016/j.actbio.2021.11.028. Epub 2021 Nov 25.
Introduction This study aims at identifying mechanical characteristics under bi-axial loading conditions of extracted swine pia mater (PM) and dura and arachnoid complex (DAC). Methods 59 porcine spinal samples have been tested on a bi-axial experimental device with a pre-load of 0.01 N and a displacement rate of 0.05 mm·s. Post-processing analysis included an elastic modulus, as well as constitutive model identification for Ogden model, reduced Gasser Ogden Holzapfel (GOH) model, anisotropic GOH model, transverse isotropic and anisotropic Gasser models as well as a Mooney-Rivlin model including fiber strengthening for PM. Additionally, micro-structure of the tissue was investigated using a bi-photon microscopy. Results Linear elastic moduli of 108 ± 40 MPa were found for DAC longitudinal direction, 53 ± 32 MPa for DAC circumferential direction, with a significant difference between directions (p < 0.001). PM presented significantly higher longitudinal than circumferential elastic moduli (26 ± 13 MPa vs 13 ± 9 MPa, p < 0.001). Transversely isotropic and anisotropic Gasser models were the most suited models for DAC (r = 0.99 and RMSE:0.4 and 0.3 MPa) and PM (r = 1 and RMSE:0.06 and 0.07 MPa) modelling. Conclusion This work provides reference values for further quasi-static bi-axial studies, and is the first for PM. Collagen structures observed by two photon microscopy confirmed the use of anisotropic Gasser model for PM and the existence of fenestration. The results from anisotropic Gasser model analysis depicted the best fit to experimental data as per this protocol. Further investigations are required to allow the use of meningeal tissue mechanical behaviour in finite element modelling with respect to physiological applications. STATEMENT OF SIGNIFICANCE: This study is the first to present biaxial tensile test of pia mater as well as constitutive model comparisons for dura and arachnoid complex tissue based on such tests. Collagen structures observed by semi-quantitative analysis of two photon microscopy confirmed the use of anisotropic Gasser model for pia mater and existence of fenestration. While clear identification of fibre population was not possible in DAC, results from anisotropic Gasser model depicted better fitting on experimental data as per this protocol. Bi-axial mechanical testing allows quasi-static characterization under conditions closer to the physiological context and the results presented could be used for further simulations of physiology. Indeed, the inclusion of meningeal tissue in finite element models will allow more accurate and reliable numerical simulations.
引言 本研究旨在确定提取的猪脑脊髓膜(PM)和硬脑膜及蛛网膜复合体(DAC)在双轴向加载条件下的力学特性。
方法 对 59 个猪脊髓样本在双轴向实验装置上进行测试,预载为 0.01 N,位移率为 0.05 mm·s。后处理分析包括弹性模量,以及 Ogden 模型、简化 Gasser-Ogden-Holzapfel(GOH)模型、各向异性 GOH 模型、横向各向同性和各向异性 Gasser 模型以及包括纤维增强的 Mooney-Rivlin 模型的本构模型识别。此外,还使用双光子显微镜研究了组织的微观结构。
结果 DAC 纵向的线性弹性模量为 108 ± 40 MPa,DAC 周向的线性弹性模量为 53 ± 32 MPa,方向间存在显著差异(p < 0.001)。PM 的纵向弹性模量明显高于周向弹性模量(26 ± 13 MPa 比 13 ± 9 MPa,p < 0.001)。横向各向同性和各向异性 Gasser 模型最适合用于 DAC(r = 0.99,RMSE:0.4 和 0.3 MPa)和 PM(r = 1,RMSE:0.06 和 0.07 MPa)建模。
结论 本工作为进一步的准静态双轴研究提供了参考值,并且是首次针对 PM 的研究。双光子显微镜观察到的胶原结构证实了各向异性 Gasser 模型在 PM 中的适用性和窗孔的存在。根据本方案,各向异性 Gasser 模型分析的结果与实验数据拟合得最好。需要进一步的研究,以便在生理应用中使用脑膜组织的力学行为进行有限元建模。
意义 本研究首次对脑脊髓膜进行双轴拉伸试验,并对硬脑膜和蛛网膜复合体组织进行本构模型比较,基于这种试验。双光子显微镜半定量分析观察到的胶原结构证实了各向异性 Gasser 模型在 PM 中的适用性和窗孔的存在。虽然在 DAC 中不能清楚地识别纤维群,但根据本方案,各向异性 Gasser 模型的结果显示出与实验数据更好的拟合。双轴力学测试允许在更接近生理环境的条件下进行准静态特性描述,并且可以在未来的生理模拟中使用所呈现的结果。事实上,在有限元模型中加入脑膜组织可以进行更准确和可靠的数值模拟。