Suppr超能文献

通过对无标签数据进行无监督机器学习,可以识别出绵羊的应对方式。

Sheep's coping style can be identified by unsupervised machine learning from unlabeled data.

机构信息

Van Yüzüncü Yıl University, Faculty of Agriculture, Department of Agricultural Biotechnology, Animal Biotechnology Unit, 65080 Van, Turkey.

出版信息

Behav Processes. 2022 Jan;194:104559. doi: 10.1016/j.beproc.2021.104559. Epub 2021 Nov 25.

Abstract

The objective of this study was to define coping style of sheep by using unsupervised machine learning approaches. A total of 105 Norduz sheep (age 3-5 years) were subjected to a 5-minute arena test. Agglomerative Hierarchical Clustering (HCA) was performed on scores of selected principal components retained from Principal Components Analysis (PCA) on arena behaviors to identify sheep coping style. Initially, the variables retained for the PCA were determined with Bartlett's test for sphericity and Kaiser-Meyer-Olkin (KMO) measure of sample adequacy. Seven behavioral variables with KMO values greater than 0.5 were used for final PCA: the average distance to group sheep (DTG), the average distance to stimulus (DTS), the duration of locomotion (LOC), the total number of zone boundaries crossed during the test (CRS), the total number of times that tested sheep sniffed stimulus (NSS), latency to the first sniff the stimulus (LSS), and subjective scores (SCR) scored by an observer on a scale from 1 to 5 (1: extremely calm, 5: extremely restless). The first two components, which were the only ones with an eigenvalue greater than one, accounted for 70.32% of the total variation and were used for clustering analysis. Clustering tendency showed that the scores for the first two components were suitable for clustering (Hopkins' H = 0.852). Several cluster validity indexes were used to obtain aggregated results to determine the most appropriate clustering method and number of clusters. Five different clustering methods: k-means and hierarchical clustering with Ward, average, single and complete linkage were compared. Bootstrap resampling was used to evaluate the stability of a given cluster using the Jaccard coefficient. The clustering method and number of clusters corresponding to the highest rank aggregation score from the bootstrap resampling indicate that the hierarchical clustering method with average linkage and 5 clusters is the most suggested clustering method. However, Ward's algorithm identified the strongest clustering structure for hierarchical clustering, as it had the highest agglomerative coefficient value (0.98). When both Jaccard and aggregation scores are considered together, Ward's method with 3 clusters was selected as the most appropriate method. Sheep were classified into three coping styles (CS) based on HCA results as reactive (Cluster 1, n = 71), intermediate (Cluster 2, n = 22) or proactive (Cluster 3, n = 12). Coping style had significant effect on behavioral variables, DTG, DTS, LOC, CRS and NSS (P < 0.05). The individuals that have proactive coping style had the highest mean values for the variables DTG, DTS and LOC and SCR (P < 0.0001). This indicates that proactive sheep are more active then reactive sheep. The CRS, LOC and NSS mean values were higher for intermediate sheep compared to reactive sheep (P < 0.05). The NSS values were higher for intermediate sheep compare to proactive sheep (P < 0.0001). The findings of the current study show that distinct coping styles in sheep may be identified based on behaviors recorded in an arena test. The findings also revealed that sheep's coping style can be objectively identified by unsupervised machine learning from unlabeled behavioral data.

摘要

本研究旨在使用无监督机器学习方法定义绵羊的应对方式。共对 105 只 Norduz 绵羊(3-5 岁)进行了 5 分钟的竞技场测试。对从竞技场行为主成分分析(PCA)中保留的选定主成分的得分进行聚簇层次聚类(HCA),以识别绵羊的应对方式。最初,使用 Bartlett 球形检验和 Kaiser-Meyer-Olkin(KMO)样本充分性度量确定用于 PCA 的变量。保留了 7 个 KMO 值大于 0.5 的行为变量,用于最终 PCA:组羊的平均距离(DTG)、刺激的平均距离(DTS)、运动的持续时间(LOC)、在测试过程中穿过的区域边界总数(CRS)、测试羊嗅刺激的总次数(NSS)、第一次嗅刺激的潜伏期(LSS)和观察者在 1 到 5 分制(1:极度平静,5:极度不安)上评分的主观分数(SCR)。前两个组件是唯一具有特征值大于 1 的组件,占总方差的 70.32%,用于聚类分析。聚类趋势表明,前两个组件的得分适合聚类(Hopkins' H = 0.852)。使用几种聚类有效性指标获得聚合结果,以确定最合适的聚类方法和聚类数。比较了 5 种不同的聚类方法:k-均值和 Ward、平均、单链接和完全链接的层次聚类。使用 Bootstrap 重采样通过使用 Jaccard 系数评估给定聚类的稳定性。从 Bootstrap 重采样中获得的聚合得分最高的聚类方法和聚类数表明,平均链接和 5 个聚类的层次聚类方法是最推荐的聚类方法。然而,Ward 算法确定了层次聚类的最强聚类结构,因为它具有最高的凝聚系数值(0.98)。当同时考虑 Jaccard 和聚合分数时,选择 Ward 算法和 3 个聚类作为最合适的方法。根据 HCA 结果,绵羊被分为三种应对方式(CS):反应型(第 1 组,n = 71)、中间型(第 2 组,n = 22)或主动型(第 3 组,n = 12)。应对方式对行为变量 DTG、DTS、LOC、CRS 和 NSS 有显著影响(P < 0.05)。具有主动应对方式的个体在 DTG、DTS 和 LOC 以及 SCR 变量上的平均值最高(P < 0.0001)。这表明主动绵羊比反应性绵羊更活跃。与反应性绵羊相比,中间型绵羊的 CRS、LOC 和 NSS 平均值较高(P < 0.05)。与反应性绵羊相比,中间型绵羊的 NSS 值较高(P < 0.0001)。本研究结果表明,可以根据竞技场测试中记录的行为来识别绵羊的不同应对方式。研究结果还表明,可以通过无监督机器学习从无标签的行为数据中客观地识别绵羊的应对方式。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验