Intelligent Modelling and Analysis Group, School of Computer Science, University of Nottingham, UK.
Comput Methods Programs Biomed. 2022 Jan;213:106534. doi: 10.1016/j.cmpb.2021.106534. Epub 2021 Nov 14.
Image segmentation is a crucial and fundamental step in many medical image analysis tasks, such as tumor measurement, surgery planning, disease diagnosis, etc. To ensure the quality of image segmentation, most of the current solutions require labor-intensive manual processes by tracing the boundaries of the objects. The workload increases tremendously for the case of three dimensional (3D) image with multiple objects to be segmented.
In this paper, we introduce our developed interactive image segmentation tool that provides efficient segmentation of multiple labels for both 2D and 3D medical images. The core segmentation method is based on a fast implementation of the fully connected conditional random field. The software also enables automatic recommendation of the next slice to be annotated in 3D, leading to a higher efficiency.
We have evaluated the tool on many 2D and 3D medical image modalities (e.g. CT, MRI, ultrasound, X-ray, etc.) and different objects of interest (abdominal organs, tumor, bones, etc.), in terms of segmentation accuracy, repeatability and computational time.
In contrast to other interactive image segmentation tools, our software produces high quality image segmentation results without the requirement of parameter tuning for each application. Both the software and source code are freely available for research purpose. Software and source code download: https://drive.google.com/file/d/1JIzWkT3M-X7jeB8tTwVcEw240TGbJAvj/view?usp=sharing.
图像分割是许多医学图像分析任务(如肿瘤测量、手术规划、疾病诊断等)的关键和基础步骤。为了确保图像分割的质量,目前大多数解决方案都需要通过追踪物体边界进行大量人工操作。对于需要分割多个物体的三维(3D)图像,工作量会大大增加。
在本文中,我们介绍了我们开发的交互式图像分割工具,该工具可高效地对 2D 和 3D 医学图像进行多个标签的分割。核心分割方法基于全连接条件随机场的快速实现。该软件还可以自动推荐要在 3D 中注释的下一个切片,从而提高效率。
我们已经在许多 2D 和 3D 医学图像模态(例如 CT、MRI、超声、X 射线等)和不同的感兴趣对象(腹部器官、肿瘤、骨骼等)上评估了该工具,从分割准确性、可重复性和计算时间等方面进行了评估。
与其他交互式图像分割工具相比,我们的软件无需为每个应用程序调整参数即可生成高质量的图像分割结果。该软件及其源代码均可免费用于研究目的。软件和源代码下载:https://drive.google.com/file/d/1JIzWkT3M-X7jeB8tTwVcEw240TGbJAvj/view?usp=sharing。