Suppr超能文献

罗宾(Robin)特征值与诺伊曼(Neumann)特征值之间的差异。

Differences Between Robin and Neumann Eigenvalues.

作者信息

Rudnick Zeév, Wigman Igor, Yesha Nadav

机构信息

School of Mathematical Sciences, Tel Aviv University, 69978 Tel Aviv, Israel.

Department of Mathematics, King's College London, London, UK.

出版信息

Commun Math Phys. 2021;388(3):1603-1635. doi: 10.1007/s00220-021-04248-y. Epub 2021 Nov 2.

Abstract

Let be a bounded planar domain, with piecewise smooth boundary . For , we consider the Robin boundary value problem where is the derivative in the direction of the outward pointing normal to . Let be the corresponding eigenvalues. The purpose of this paper is to study the Robin-Neumann gaps For a wide class of planar domains we show that there is a limiting mean value, equal to and in the smooth case, give an upper bound of and a uniform lower bound. For ergodic billiards we show that along a density-one subsequence, the gaps converge to the mean value. We obtain further properties for rectangles, where we have a uniform upper bound, and for disks, where we improve the general upper bound.

摘要

设(\Omega)是一个有界平面区域,其边界(\partial\Omega)是分段光滑的。对于(\alpha\in\mathbb{R}),我们考虑罗宾边值问题(\begin{cases}-\Delta u=\lambda u&\text{在 }\Omega 内\\frac{\partial u}{\partial\nu}+\alpha u = 0&\text{在 }\partial\Omega 上\end{cases}),其中(\frac{\partial u}{\partial\nu})是(u)沿指向(\Omega)外部的法向方向的导数。设(\lambda_n)是相应的特征值。本文的目的是研究罗宾 - 诺伊曼间隙(\lambda_{n + 1}-\lambda_n)。对于一大类平面区域,我们证明存在一个极限平均值,等于(\frac{4\pi}{|\partial\Omega|}),并且在光滑情况下,给出(\lambda_{n + 1}-\lambda_n)的一个上界和一个一致下界。对于遍历台球问题,我们证明沿着一个密度为(1)的子序列,间隙收敛到平均值。我们还得到了矩形(在矩形中我们有一个一致上界)和圆盘(在圆盘中我们改进了一般上界)的进一步性质。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dcd7/8599415/d34f16f3feaf/220_2021_4248_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验