Suppr超能文献

Mushrooms and other billiards with divided phase space.

作者信息

Bunimovich Leonid A.

机构信息

Southeast Applied Analysis Center, School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 30332.

出版信息

Chaos. 2001 Dec;11(4):802-808. doi: 10.1063/1.1418763.

Abstract

We present the first natural and visible examples of Hamiltonian systems with divided phase space allowing a rigorous mathematical analysis. The simplest such family (mushrooms) demonstrates a continuous transition from a completely chaotic system (stadium) to a completely integrable one (circle). In the course of this transition, an integrable island appears, grows and finally occupies the entire phase space. We also give the first examples of billiards with a "chaotic sea" (one ergodic component) and an arbitrary (finite or infinite) number of KAM islands and the examples with arbitrary (finite or infinite) number of chaotic (ergodic) components with positive measure coexisting with an arbitrary number of islands. Among other results is the first example of completely understood (rigorously studied) billiards in domains with a fractal boundary. (c) 2001 American Institute of Physics.

摘要

相似文献

1
Mushrooms and other billiards with divided phase space.
Chaos. 2001 Dec;11(4):802-808. doi: 10.1063/1.1418763.
2
One-particle and few-particle billiards.
Chaos. 2006 Mar;16(1):013129. doi: 10.1063/1.2147740.
4
Multiple returns for some regular and mixing maps.
Chaos. 2005 Sep;15(3):33109. doi: 10.1063/1.2005507.
5
Islands of accelerator modes and homoclinic tangles.
Chaos. 1999 Sep;9(3):697-705. doi: 10.1063/1.166444.
7
Chaotic transmission of waves and "cooling" of signals.
Chaos. 1997 Mar;7(1):182-186. doi: 10.1063/1.166233.
8
Leaking billiards.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Apr;75(4 Pt 2):046204. doi: 10.1103/PhysRevE.75.046204. Epub 2007 Apr 10.
9
Convergence of Hamiltonian systems to billiards.
Chaos. 1998 Jun;8(2):466-474. doi: 10.1063/1.166328.

引用本文的文献

1
Observation of a half-illuminated mode in an open Penrose cavity.
Sci Rep. 2022 Jun 13;12(1):9798. doi: 10.1038/s41598-022-13963-y.
2
Light chaotic dynamics in the transformation from curved to flat surfaces.
Proc Natl Acad Sci U S A. 2022 Mar 22;119(12):e2112052119. doi: 10.1073/pnas.2112052119. Epub 2022 Mar 16.
3
Differences Between Robin and Neumann Eigenvalues.
Commun Math Phys. 2021;388(3):1603-1635. doi: 10.1007/s00220-021-04248-y. Epub 2021 Nov 2.
4
Equilibration of energy in slow-fast systems.
Proc Natl Acad Sci U S A. 2017 Dec 5;114(49):E10514-E10523. doi: 10.1073/pnas.1706341114. Epub 2017 Nov 28.
5
Microorganism billiards in closed plane curves.
Eur Phys J E Soft Matter. 2016 Dec;39(12):122. doi: 10.1140/epje/i2016-16122-6. Epub 2016 Dec 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验