Suppr超能文献

基于异常行为检测的智能家居系统用户认证方法。

Anomalous behavior detection-based approach for authenticating smart home system users.

作者信息

Amraoui Noureddine, Zouari Belhassen

机构信息

Mediatron Research Laboratory, Higher School of Communications of Tunis, University of Carthage, Technology City of Communications, El Ghazala, 2083 Ariana Tunisia.

出版信息

Int J Inf Secur. 2022;21(3):611-636. doi: 10.1007/s10207-021-00571-6. Epub 2021 Nov 20.

Abstract

This paper presents Duenna, an authentication framework for smart home systems (SHSs). When using controlling apps (e.g., a smartphone app), Duenna makes sure that only legitimate SHS users are allowed to operate their Internet of things (IoT) devices. Duenna is built upon a behavioral anomaly detection (BAD)-based approach. In particular, we hypothesize that SHS users usually operate their home IoT devices in typical and distinctive patterns. Therefore, users that attempt to operate devices differently from such a regular behavior are considered malicious. Technically, Duenna operates in two modes. In an initialization operation, Duenna first collects and processes the historical cyber and physical activities of an SHS user in addition to the historical states of the SHS itself to build a set of incremental anomaly detection (AD) models. Then, in an interactive operation, the trained AD models are, then, used as a baseline from which anomalous commands (i.e., outliers) are detected and rejected, while regular commands (i.e., targets) are considered legitimate and allowed to be executed. Through an empirical evaluation conducted on real-world data, Duenna exhibits high authentication rates ensuring both security and user experience. The findings obtained from such evaluation show that a user behavior-based approach is a promising security scheme that could be integrated into existing SHS platforms.

摘要

本文介绍了Duenna,一种用于智能家居系统(SHS)的认证框架。当使用控制应用程序(如智能手机应用)时,Duenna可确保只有合法的SHS用户才能操作其物联网(IoT)设备。Duenna基于一种基于行为异常检测(BAD)的方法构建。具体而言,我们假设SHS用户通常以典型且独特的模式操作其家庭物联网设备。因此,试图以不同于这种常规行为的方式操作设备的用户被视为恶意用户。从技术上讲,Duenna以两种模式运行。在初始化操作中,Duenna除了收集和处理SHS用户的历史网络和物理活动以及SHS本身的历史状态外,还构建一组增量异常检测(AD)模型。然后,在交互式操作中,经过训练的AD模型被用作基线,从中检测并拒绝异常命令(即离群值),而常规命令(即目标)则被视为合法并允许执行。通过对实际数据进行的实证评估,Duenna展现出高认证率,确保了安全性和用户体验。从该评估中获得的结果表明,基于用户行为的方法是一种有前景的安全方案,可以集成到现有的SHS平台中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e3a/8605774/262f99470e67/10207_2021_571_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验