Suppr超能文献

用于高压锂镍锰氧化物阴极的经济高效成膜添加剂

Cost-Efficient Film-Forming Additive for High-Voltage Lithium-Nickel-Manganese Oxide Cathodes.

作者信息

Ma Zekai, Chen Huiyang, Zhou Hebing, Xing Lidan, Li Weishan

机构信息

School of Chemistry, South China Normal University, Guangzhou 510006, Guangdong, China.

National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Key Laboratory of ETESPG(GHEI), South China Normal University, Guangzhou 510006, Guangdong, China.

出版信息

ACS Omega. 2021 Nov 10;6(46):31330-31338. doi: 10.1021/acsomega.1c05176. eCollection 2021 Nov 23.

Abstract

The operating voltage of lithium-nickel-manganese oxide (LiNiMnO, LNMO) cathodes far exceeds the oxidation stability of the commercial electrolytes. The electrolytes undergo oxidation and decomposition during the charge/discharge process, resulting in the capacity fading of a high-voltage LNMO. Therefore, enhancing the interphasial stability of the high-voltage LNMO cathode is critical to promoting its commercial application. Applying a film-forming additive is one of the valid methods to solve the interphasial instability. However, most of the proposed additives are expensive, which increases the cost of the battery. In this work, a new cost-efficient film-forming electrolyte additive, 4-trifluoromethylphenylboronic acid (4TP), is adopted to enhance the long-term cycle stability of LNMO/Li cell at 4.9 V. With only 2 wt % 4TP, the capacity retention of LNMO/Li cell reaches up to 89% from 26% after 480 cycles. Moreover, 4TP is effective in increasing the rate performance of graphite anode. These results show that the 4TP additive can be applied in high-voltage LIBs, which significantly increases the manufacturing cost while improving the battery performance.

摘要

锂镍锰氧化物(LiNiMnO,LNMO)阴极的工作电压远远超过商业电解质的氧化稳定性。在充电/放电过程中,电解质会发生氧化和分解,导致高压LNMO的容量衰减。因此,提高高压LNMO阴极的界面稳定性对于推动其商业应用至关重要。应用成膜添加剂是解决界面不稳定性的有效方法之一。然而,大多数提出的添加剂价格昂贵,这增加了电池成本。在这项工作中,采用了一种新型的具有成本效益的成膜电解质添加剂4-三氟甲基苯硼酸(4TP)来提高LNMO/Li电池在4.9 V下的长期循环稳定性。仅添加2 wt%的4TP,LNMO/Li电池的容量保持率在480次循环后从26%提高到了89%。此外,4TP在提高石墨阳极的倍率性能方面也很有效。这些结果表明,4TP添加剂可应用于高压锂离子电池,在提高电池性能的同时显著增加了制造成本。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c12/8613853/d6ac22e8d720/ao1c05176_0002.jpg

相似文献

1
Cost-Efficient Film-Forming Additive for High-Voltage Lithium-Nickel-Manganese Oxide Cathodes.
ACS Omega. 2021 Nov 10;6(46):31330-31338. doi: 10.1021/acsomega.1c05176. eCollection 2021 Nov 23.
3
Electrolyte Therapy for Improving the Performance of LiNiMnO Cathodes Assembled Lithium-Ion Batteries.
ACS Appl Mater Interfaces. 2020 May 13;12(19):21368-21385. doi: 10.1021/acsami.0c02516. Epub 2020 Apr 28.
4
Stabilized Cathode Interphase for Enhancing Electrochemical Performance of LiNiMnO-Based Lithium-Ion Battery via -1,2,3,6-Tetrahydrophthalic Anhydride.
ACS Appl Mater Interfaces. 2021 Apr 21;13(15):18314-18323. doi: 10.1021/acsami.1c01979. Epub 2021 Apr 6.
5
Research Progress in Improving the Cycling Stability of High-Voltage LiNiMnO Cathode in Lithium-Ion Battery.
Nanomicro Lett. 2017;9(2):22. doi: 10.1007/s40820-016-0123-3. Epub 2017 Jan 4.
7
Stable Cycling of High-Voltage Lithium-Metal Batteries Enabled by High-Concentration FEC-Based Electrolyte.
ACS Appl Mater Interfaces. 2020 May 20;12(20):22901-22909. doi: 10.1021/acsami.0c03952. Epub 2020 May 10.
8
An electrolyte additive for the improved high voltage performance of LiNiMnO (LNMO) cathodes in Li-ion batteries.
J Mater Chem A Mater. 2023 Mar 22;11(14):7670-7678. doi: 10.1039/d2ta09930f. eCollection 2023 Apr 4.
9
Stabilized High-Voltage Cathodes via an F-Rich and Si-Containing Electrolyte Additive.
ACS Appl Mater Interfaces. 2020 Jun 24;12(25):28169-28178. doi: 10.1021/acsami.0c05479. Epub 2020 Jun 9.
10
Cycling Stability of Lithium-Ion Batteries Based on Fe-Ti-Doped LiNi Mn O Cathodes, Graphite Anodes, and the Cathode-Additive Li PO.
Adv Sci (Weinh). 2023 Aug;10(24):e2301874. doi: 10.1002/advs.202301874. Epub 2023 Jun 22.

引用本文的文献

1
Electrolyte Engineering for High-Voltage Lithium Metal Batteries.
Research (Wash D C). 2022 Aug 21;2022:9837586. doi: 10.34133/2022/9837586. eCollection 2022.

本文引用的文献

1
Synthesis and Characterization of a Multication Doped Mn Spinel, LiNiCuFeMnO, as 5 V Positive Electrode Material.
ACS Omega. 2020 Aug 31;5(36):22861-22873. doi: 10.1021/acsomega.0c02174. eCollection 2020 Sep 15.
3
4
Stabilized High-Voltage Cathodes via an F-Rich and Si-Containing Electrolyte Additive.
ACS Appl Mater Interfaces. 2020 Jun 24;12(25):28169-28178. doi: 10.1021/acsami.0c05479. Epub 2020 Jun 9.
5
Trimethyl Borate as Film-Forming Electrolyte Additive To Improve High-Voltage Performances.
ACS Appl Mater Interfaces. 2019 May 15;11(19):17435-17443. doi: 10.1021/acsami.9b03417. Epub 2019 May 2.
6
Highly Stable Lithium Metal Batteries Enabled by Regulating the Solvation of Lithium Ions in Nonaqueous Electrolytes.
Angew Chem Int Ed Engl. 2018 May 4;57(19):5301-5305. doi: 10.1002/anie.201801513. Epub 2018 Mar 7.
7
Constructing a Protective Interface Film on Layered Lithium-Rich Cathode Using an Electrolyte Additive with Special Molecule Structure.
ACS Appl Mater Interfaces. 2016 Nov 9;8(44):30116-30125. doi: 10.1021/acsami.6b09554. Epub 2016 Oct 28.
8
Tunable and robust phosphite-derived surface film to protect lithium-rich cathodes in lithium-ion batteries.
ACS Appl Mater Interfaces. 2015 Apr 22;7(15):8319-29. doi: 10.1021/acsami.5b01770. Epub 2015 Apr 8.
9
Oxidation induced decomposition of ethylene carbonate from DFT calculations--importance of explicitly treating surrounding solvent.
Phys Chem Chem Phys. 2012 Oct 5;14(37):12838-43. doi: 10.1039/c2cp41103b. Epub 2012 Aug 13.
10
Density functional theory study of the role of anions on the oxidative decomposition reaction of propylene carbonate.
J Phys Chem A. 2011 Dec 1;115(47):13896-905. doi: 10.1021/jp206153n. Epub 2011 Nov 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验