Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via F. Marzolo 5, 35131, Padova, Italy.
Department of Biology, University of Padova, via U. Bassi 58/B, 35131, Padova, Italy.
Drug Deliv Transl Res. 2022 Aug;12(8):1788-1810. doi: 10.1007/s13346-021-01085-3. Epub 2021 Nov 28.
Carbohydrate-based materials are increasingly investigated for a range of applications spanning from healthcare to advanced functional materials. Synthetic glycopolymers are particularly attractive as they possess low toxicity and immunogenicity and can be used as multivalent ligands to target sugar-binding proteins (lectins). Here, we utilised RAFT polymerisation to synthesize two families of novel diblock copolymers consisting of a glycopolymers block containing either mannopyranose or galactopyranose pendant units, which was elongated with sodium 2-acrylamido-2-methyl-1-propanesulfonate (AMPS) to generate a polyanionic block. The latter enabled complexation of cationic aminoglycoside antibiotic tobramycin through electrostatic interactions (loading efficiency in the 0.5-6.3 wt% range, depending on the copolymer). The resulting drug vectors were characterized by dynamic light scattering, zeta-potential, and transmission electron microscopy. Tobramycin-loaded complexes were tested for their ability to prevent clustering or disrupt biofilm of the Pseudomonas aeruginosa Gram-negative bacterium responsible for a large proportion of nosocomial infection, especially in immunocompromised patients. P. aeruginosa possesses two specific tetrameric carbohydrate-binding adhesins, LecA (PA-IL, galactose/N-acetyl-D-galactosamine-binding) and LecB (PA-IIL, fucose/mannose-binding), and the cell-associated and extracellular adhesin CdrA (Psl/mannose-binding) thus ideally suited for targeted drug delivery using sugar-decorated tobramycin-loaded complexes here developed. Both aliphatic and aromatic linkers were utilised to link the sugar pendant units to the polyacrylamide polymer backbone to assess the effect of the nature of such linkers on bactericidal/bacteriostatic properties of the complexes. Results showed that tobramycin-loaded complexes efficiently suppressed (40 to 60% of inhibition) in vitro biofilm formation in PAO1-L P. aeruginosa and that preferential targeting of PAO1-L biofilm can be achieved using mannosylated glycopolymer-b-AMPS.
碳水化合物材料因其在医疗保健到先进功能材料等多种应用中的应用而受到越来越多的研究。合成糖聚合物特别有吸引力,因为它们具有低毒性和免疫原性,并且可用作靶向糖结合蛋白(凝集素)的多价配体。在这里,我们利用 RAFT 聚合反应合成了两种新型两亲嵌段共聚物家族,它们由含有甘露吡喃糖或半乳糖吡喃糖侧基单元的糖聚合物嵌段组成,该嵌段通过丙烯酰胺基-2-甲基-1-丙磺酸(AMPS)的延伸来生成聚阴离子嵌段。后者能够通过静电相互作用使阳离子氨基糖苷类抗生素妥布霉素络合(根据共聚物的不同,负载效率在 0.5-6.3wt%范围内)。所得药物载体通过动态光散射、ζ-电位和透射电子显微镜进行了表征。负载妥布霉素的复合物用于测试其防止负责大部分医院感染的革兰氏阴性假单胞菌(尤其是免疫功能低下的患者)聚集或破坏生物膜的能力。假单胞菌拥有两种特定的四聚体碳水化合物结合粘附素 LecA(PA-IL,半乳糖/N-乙酰-D-半乳糖胺结合)和 LecB(PA-IIL,岩藻糖/甘露糖结合),以及细胞相关和细胞外粘附素 CdrA(Psl/甘露糖结合),因此非常适合使用此处开发的糖修饰妥布霉素负载复合物进行靶向药物输送。脂肪族和芳香族连接子都被用于将糖侧基单元连接到聚丙烯酰胺聚合物主链上,以评估这种连接子的性质对复合物杀菌/抑菌性质的影响。结果表明,负载妥布霉素的复合物能有效抑制 PAO1-L 假单胞菌体外生物膜的形成(抑制率为 40-60%),并且使用甘露糖化糖聚合物-b-AMPS 可以实现对 PAO1-L 生物膜的优先靶向。