Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona, USA.
Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA.
Med Phys. 2022 Jan;49(1):632-647. doi: 10.1002/mp.15384. Epub 2021 Dec 10.
Due to the employment of quadratic programming using soft constraints to implement dose volume constraints and the "trial-and-error" procedure needed to achieve a clinically acceptable plan, conventional dose volume constraints (upper limit) are not adequately effective in controlling small and isolated hot spots in the dose/linear energy transfer (LET) distribution. Such hot spots can lead to adverse events. In order to mitigate the risk of brain necrosis, one of the most clinically significant adverse events in patients receiving intensity-modulated proton therapy (IMPT) for base of skull (BOS) cancer, we propose per-voxel constraints to minimize hot spots in LET-guided robust optimization.
Ten BOS cancer patients treated with IMPT were carefully selected by meeting one of the following conditions: (1) diagnosis of brain necrosis during follow-up; and (2) considered high risk for brain necrosis by not meeting dose constraints to the brain. An optimizing structure (BrainOPT) and an evaluating structure (BrainROI) that both contained the aforementioned hot dose regions in the brain were generated for optimization and evaluation, respectively. Two plans were generated for every patient: one using conventional dose-only robust optimization, the other using LET-guided robust optimization. The impact of LET was integrated into the optimization via a term of extra biological dose (xBD). A novel optimization tool of per-voxel constraints to control small and isolated hot spots in either the dose, LET, or combined (dose/LET) distribution was developed and used to minimize dose/LET hot spots of the selected structures. Indices from dose-volume histogram (DVH) and xBD dose-volume histogram (xBDVH) were used in the plan evaluation. A newly developed tool of the dose-LET-volume histogram (DLVH) was also adopted to illustrate the underlying mechanism. Wilcoxon signed-rank test was used for statistical comparison of the DVH and xBDVH indices between the conventional dose-only and the LET-guided robustly optimized plans.
Per-voxel constraints effectively and efficiently minimized dose hot spots in both dose-only and LET-guided robust optimization and LET hot spots in LET-guided robust optimization. Compared to the conventional dose-only robust optimization, the LET-guided robust optimization could generate plans with statistically lower xBD hot spots in BrainROI (VxBD,50 Gy[RBE], p = 0.009; VxBD,60 Gy[RBE], p = 0.025; xBD1cc, p = 0.017; xBD2cc, p = 0.022) with comparable dose coverage, dose hot spots in the target, and dose hot spots in BrainROI. DLVH analysis indicated that LET-guided robust optimization could either reduce LET at the same dose level or redistribute high LET from high dose regions to low dose regions.
Per-voxel constraint is a powerful tool to minimize dose/LET hot spots in IMPT. The LET-guided robustly optimized plans outperformed the conventional dose-only robustly optimized plans in terms of xBD hot spots control.
由于采用二次规划使用软约束来实现剂量体积约束,以及为了达到临床可接受的计划而需要进行的“反复试验”过程,传统的剂量体积约束(上限)在控制剂量/线性能量传递(LET)分布中的小而孤立的热点方面效果并不理想。这些热点可能导致不良事件。为了降低脑坏死的风险,我们提出了基于体素的约束条件,以最小化 LET 引导的稳健优化中的热点,这是接受基底颅(BOS)癌症调强质子治疗(IMPT)的患者中最具临床意义的不良事件之一。
精心挑选了 10 名接受 IMPT 治疗的 BOS 癌症患者,符合以下条件之一:(1)随访期间诊断为脑坏死;(2)未满足大脑剂量限制,被认为存在脑坏死高风险。为了优化和评估,分别生成了包含大脑中上述高剂量区域的优化结构(BrainOPT)和评估结构(BrainROI)。为每位患者生成了两种计划:一种使用传统的剂量唯一稳健优化,另一种使用 LET 引导的稳健优化。通过额外生物剂量(xBD)项将 LET 的影响纳入到优化中。开发了一种新的基于体素的约束条件优化工具,用于控制剂量、LET 或两者组合(剂量/LET)分布中的小而孤立的热点,以最小化选定结构的剂量/LET 热点。剂量-体积直方图(DVH)和 xBD 剂量-体积直方图(xBDVH)中的指标用于计划评估。还采用了一种新开发的剂量-LET-体积直方图(DLVH)工具来阐明潜在机制。使用 Wilcoxon 符号秩检验对传统的仅剂量和 LET 引导的稳健优化计划之间的 DVH 和 xBDVH 指标进行统计比较。
基于体素的约束条件可以有效地减少剂量唯一和 LET 引导的稳健优化中的剂量热点,以及 LET 引导的稳健优化中的 LET 热点。与传统的仅剂量稳健优化相比,LET 引导的稳健优化可以生成在 BrainROI 中具有统计学上更低的 xBD 热点的计划(VxBD,50Gy[RBE],p=0.009;VxBD,60Gy[RBE],p=0.025;xBD1cc,p=0.017;xBD2cc,p=0.022),同时具有可比的靶区剂量覆盖、靶区剂量热点和 BrainROI 中的剂量热点。DLVH 分析表明,LET 引导的稳健优化可以在相同剂量水平下降低 LET,或者将高 LET 从高剂量区域重新分配到低剂量区域。
基于体素的约束条件是减少 IMPT 中剂量/LET 热点的有效工具。在 xBD 热点控制方面,LET 引导的稳健优化计划优于传统的仅剂量稳健优化计划。