State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
PLoS Genet. 2021 Nov 29;17(11):e1009940. doi: 10.1371/journal.pgen.1009940. eCollection 2021 Nov.
The UNC-104/KIF1A motor is crucial for axonal transport of synaptic vesicles, but how the UNC-104/KIF1A motor is activated in vivo is not fully understood. Here, we identified point mutations located in the motor domain or the inhibitory CC1 domain, which resulted in gain-of-function alleles of unc-104 that exhibit hyperactive axonal transport and abnormal accumulation of synaptic vesicles. In contrast to the cell body localization of wild type motor, the mutant motors accumulate on neuronal processes. Once on the neuronal process, the mutant motors display dynamic movement similarly to wild type motors. The gain-of-function mutation on the motor domain leads to an active dimeric conformation, releasing the inhibitory CC1 region from the motor domain. Genetically engineered mutations in the motor domain or CC1 of UNC-104, which disrupt the autoinhibitory interface, also led to the gain of function and hyperactivation of axonal transport. Thus, the CC1/motor domain-mediated autoinhibition is crucial for UNC-104/KIF1A-mediated axonal transport in vivo.
UNC-104/KIF1A 马达对于突触囊泡的轴突运输至关重要,但 UNC-104/KIF1A 马达在体内如何被激活尚不完全清楚。在这里,我们鉴定了位于马达结构域或抑制性 CC1 结构域的点突变,这些突变导致 unc-104 的功能获得性等位基因表现出过度活跃的轴突运输和突触囊泡的异常积累。与野生型马达在细胞体的定位不同,突变体马达在神经元突起上积累。一旦在神经元突起上,突变体马达就会像野生型马达一样表现出动态运动。马达结构域上的功能获得性突变导致活性二聚体构象,从而将抑制性 CC1 区域从马达结构域释放出来。UNC-104 的马达结构域或 CC1 中的基因工程突变,破坏了自动抑制界面,也导致了轴突运输的功能获得和过度激活。因此,CC1/马达结构域介导的自动抑制对于 UNC-104/KIF1A 介导的体内轴突运输至关重要。