Nichols Emma L, Cadar Dorina, Lee Jinkook, Jones Richard N, Gross Alden L
Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, W6508, Baltimore, MD 21205, United States.
Institute of Epidemiology & Health, University College London, Grower Street, London WC1E 6BT, England.
Methods. 2022 Aug;204:179-188. doi: 10.1016/j.ymeth.2021.11.011. Epub 2021 Nov 26.
Harmonization means to make data comparable. Recent efforts to generate comparable data on cognitive performance of older adults from many different countries around the world have presented challenges for direct comparison. Neuropsychological instruments vary in many respects, including language, administration techniques and cultural differences, which all present important obstacles to assumptions regarding the presence of linking items. Item response theory (IRT) methods have been previously used to harmonize cross-national data on cognition, but these methods rely on linking items to establish the shared metric. We introduce an alternative approach for linking cognitive performance across two (or more) groups when the fielded assessments contain no items that can be reasonably considered linking items: Linear Linking for Related Traits (LLRT). We demonstrate this methodological approach in a sample from a single United States study split by educational attainment, and in two sets of cross-national comparisons (United States to England, and United States to India). All data were collected as part of the Harmonized Cognitive Assessment Protocol (HCAP) and are publicly available. Our method relies upon strong assumptions, and we offer suggestions for how the method can be extended to relax those assumptions in future work.
协调意味着使数据具有可比性。最近,为了生成来自世界上许多不同国家的老年人认知表现的可比数据所做的努力,给直接比较带来了挑战。神经心理学测试工具在许多方面存在差异,包括语言、施测技术和文化差异,这些都对关于是否存在链接项目的假设构成了重要障碍。项目反应理论(IRT)方法此前已被用于协调跨国认知数据,但这些方法依赖于链接项目来建立共享度量。当实地评估中没有可以合理视为链接项目的项目时,我们引入了一种用于在两组(或更多组)之间链接认知表现的替代方法:相关特质的线性链接(LLRT)。我们在美国一项按教育程度划分的单一研究样本中,以及在两组跨国比较(美国与英国,以及美国与印度)中展示了这种方法。所有数据都是作为统一认知评估协议(HCAP)的一部分收集的,并且是公开可用的。我们的方法依赖于强有力的假设,并且我们为如何在未来的工作中扩展该方法以放宽这些假设提供了建议。