Lang Lang, Rubin Leah H, Dastgheyb Raha M, Vance David E, Letendre Scott L, Franklin Donald R, Xu Yanxun
Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD, USA.
Departments of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA; Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
J Clin Epidemiol. 2025 Feb;178:111620. doi: 10.1016/j.jclinepi.2024.111620. Epub 2024 Nov 29.
The aim of this study was to develop a refined method for harmonizing longitudinal cognitive data across several large-scale studies in people with HIV (PWH), in whom cognitive complications are common and heterogeneous in presentation.
We developed a refined method for harmonizing longitudinal cognitive data across five large-scale studies in PWH that used different cognitive batteries with only some overlapping tests-Women's Interagency HIV Study (WIHS), Multicenter AIDS Cohort Study, CNS HIV Antiretroviral Therapy Effects Research (CHARTER), National NeuroAIDS Tissue Consortium, and the HIV Neurobehavioral Research Program. Traditional data harmonization methods using latent variable models focus on cross-sectional data and require the presence of common cognitive tests to serve as "linking" assessments. However, the absence of such common tests for certain cognitive domains can preclude the direct application of these traditional techniques. To address these challenges, we developed a harmonization method that leveraged a second-order factor model, which capitalized on the structural relationships among cognitive domains.
Our approach yielded harmonized cognitive domain scores that are demographically consistent across different cohorts and exhibit strong correlations with the raw or log transformed (eg, timed outcomes) cognitive test scores. These harmonized scores accurately reflected variations according to age, educational status, and other demographic factors, while preserving participants' longitudinal cognitive trajectories.
Our harmonization methods are essential for future analyses of large-scale, retrospective data to understand the heterogeneity in cognitive complications in PWH. These methods can be applied to harmonize new datasets with similar measures.
本研究的目的是开发一种优化方法,用于整合多项针对感染人类免疫缺陷病毒(HIV)人群(PWH)的大规模研究中的纵向认知数据,在这些人群中,认知并发症很常见且表现各异。
我们开发了一种优化方法,用于整合五项针对PWH的大规模研究中的纵向认知数据,这些研究使用了不同的认知测试组合,只有部分测试重叠——妇女机构间HIV研究(WIHS)、多中心艾滋病队列研究、中枢神经系统HIV抗逆转录病毒治疗效果研究(CHARTER)、国家神经艾滋病组织联盟以及HIV神经行为研究项目。使用潜在变量模型的传统数据整合方法侧重于横断面数据,并且需要存在共同的认知测试作为“链接”评估。然而,某些认知领域缺乏此类共同测试可能会妨碍这些传统技术的直接应用。为应对这些挑战,我们开发了一种利用二阶因子模型的整合方法,该模型利用了认知领域之间的结构关系。
我们的方法得出了在不同队列中人口统计学上一致的整合认知领域分数,并且与原始或对数转换后的(如计时结果)认知测试分数具有很强的相关性。这些整合分数准确反映了根据年龄教育程度和其他人口统计学因素的差异,同时保留了参与者的纵向认知轨迹。
我们的整合方法对于未来分析大规模回顾性数据以了解PWH认知并发症的异质性至关重要。这些方法可应用于整合具有类似测量方法的新数据集。