Suppr超能文献

不同形貌MoC的可控合成及其在电催化析氢反应中的应用

Controllable synthesis of MoC with different morphology and application to electrocatalytic hydrogen evolution reaction.

作者信息

Chang He-Qiang, Zhang Guo-Hua, Chou Kuo-Chih

机构信息

State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, People's Republic of China.

Beijing Key Laboratory of Green Recovery and Extraction of Rare and Precious Metals, University of Science and Technology Beijing, Beijing 100083, People's Republic of China.

出版信息

Nanotechnology. 2021 Dec 15;33(10). doi: 10.1088/1361-6528/ac3e33.

Abstract

In order to evaluate the effect of precursors and synthesis strategies on catalytic ability of MoC in the hydrogen evolution reaction (HER), four kinds of MoC were synthesized using two kinds of MoOby two strategies. Compared with the one-step direct carbonization strategy, MoC with a large special surface area and a better performance could be synthesized by the two-step strategy composed of a nitridation reaction and a carbonization reaction. Additionally, the as-prepared porous MoC nanobelts (NBs) exhibit good electrocatalytic performance with a small overpotential of 165 mV (0.5 M HSO) and 124 mV (1 M KOH) at 10 mA cm, as well as a Tafel slope of 58 mV dec(0.5 M HSO) and 59 mV dec(1 M KOH). The excellent catalytic activity is ascribed to the nano crystallites and porous structure. What's more, the belt structure also facilitates the charge transport in the materials during the electrocatalytic HER process. Therefore, the two-step strategy provides a new insight into the structural design with superior performance for electrocatalytic HER.

摘要

为了评估前驱体和合成策略对碳化钼在析氢反应(HER)中催化能力的影响,采用两种策略使用两种氧化钼合成了四种碳化钼。与一步直接碳化策略相比,由氮化反应和碳化反应组成的两步策略可以合成具有大比表面积和更好性能的碳化钼。此外,所制备的多孔碳化钼纳米带(NBs)在10 mA cm时表现出良好的电催化性能,在0.5 M HSO中过电位为165 mV,在1 M KOH中过电位为124 mV,以及在0.5 M HSO中塔菲尔斜率为58 mV dec,在1 M KOH中塔菲尔斜率为59 mV dec。优异的催化活性归因于纳米微晶和多孔结构。此外,带状结构也有利于电催化HER过程中材料中的电荷传输。因此,两步策略为具有优异性能的电催化HER结构设计提供了新的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验