Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA.
Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA; Department of Environmental Science, University of Arizona, Tucson, AZ, USA.
Sci Total Environ. 2022 Feb 1;806(Pt 1):150514. doi: 10.1016/j.scitotenv.2021.150514. Epub 2021 Sep 22.
Grassland soils store a substantial proportion of the global soil carbon (C) stock. The transformation of C in grassland soils with respect to chemical composition and persistence strongly regulate the predicted terrestrial-atmosphere C flux in global C biogeochemical cycling models. In addition, increasing atmospheric nitrogen (N) deposition alters C chemistry in grassland soils. However, there remains controversy about the importance of mineralogical versus biochemical preservation of soil C, as well as uncertainty regarding how grassland soil C chemistry responds to elevated N. This study used grassland soils with diverse soil organic matter (SOM) chemistries in an 8-month aerobic incubation experiment to evaluate whether the chemical composition of SOM converged across sites over time, and how SOM persistence responded to the N addition. This study demonstrates that over the course of incubation, the richness of labile compounds decreased in soils with less ferrihydrite content, whereas labile compounds were more persistent in ferrihydrite rich soils. In contrast, we found that the richness of more complex compounds increased over the incubation in most sites, independent of soil mineralogy. Moreover, we demonstrate the extent to which the diverse chemical composition of SOM converged among sites in response to microbial decomposition. N fertilization decreased soil respiration and inhibited the convergence of molecular composition across ecosystems by altering N demand for microbial metabolism and chemical interactions between minerals and organic molecules. This study provides original evidence that the decomposition and metabolism of labile organic molecules were largely regulated by soil mineralogy (physicochemical preservation), while the metabolism of more complex organic molecules was controlled by substrate complexity (biochemical preservation) independent to mineral-organic interactions. This study advanced our understanding of the dynamic biogeochemical cycling of C by unveiling that N addition dampened C respiration and diminished the convergence of SOM chemistry across diverse grassland ecosystems.
草原土壤储存了全球土壤碳(C)储量的很大一部分。草原土壤中 C 的化学组成和持久性的转变强烈调节了全球碳生物地球化学循环模型中预测的陆地-大气 C 通量。此外,大气氮(N)沉降的增加改变了草原土壤中的 C 化学性质。然而,关于矿物学与生物化学对土壤 C 保存的重要性,以及关于草原土壤 C 化学对升高的 N 如何响应的不确定性仍然存在争议。本研究使用具有不同土壤有机质(SOM)化学性质的草原土壤,在 8 个月的有氧培养实验中,评估 SOM 的化学组成是否随时间在不同地点趋同,以及 SOM 的持久性如何响应 N 添加。本研究表明,在培养过程中,富铁氢氧化物含量较低的土壤中易分解化合物的丰富度降低,而富铁氢氧化物土壤中的易分解化合物则更持久。相比之下,我们发现,在大多数地点,随着培养的进行,更复杂的化合物的丰富度增加,而与土壤矿物学无关。此外,我们证明了 SOM 的不同化学组成在多大程度上因微生物分解而在不同地点趋同。N 施肥通过改变微生物代谢的 N 需求和矿物与有机分子之间的化学相互作用,降低了土壤呼吸并抑制了生态系统之间分子组成的趋同。本研究提供了原始证据,证明易分解有机分子的分解和代谢主要受土壤矿物学(物理化学保存)调节,而更复杂有机分子的代谢则受基质复杂性(生化保存)控制,与矿物-有机相互作用无关。本研究通过揭示 N 添加抑制了 C 呼吸并减少了不同草原生态系统中 SOM 化学的趋同,推进了我们对 C 动态生物地球化学循环的理解。