School of Mathematics, Cardiff University, Senghennydd Road, Cardiff, CF24 4AG, UK.
Sci Rep. 2021 Nov 29;11(1):23062. doi: 10.1038/s41598-021-02483-w.
Underwater seismic events generate acoustic radiation (such as acoustic-gravity waves), that carries information about the source and can travel long distances before dissipating. Effective early warning, emergency response, and information dissemination for earthquakes and tsunamis require a rapid characterisation of the fault properties: geometry and dynamics. In this work, we analysed hydrophone recordings of 201 earthquakes, located in the Pacific and the Indian Ocean, by employing acoustic signal processing and classification methods. The analysis allows identifying the type of earthquake (i.e. slip type, magnitude) and provides near real-time estimation of the effective properties of the fault dynamics and geometry. The results were compared against values reported by the Harvard Global Centroid Moment Tensor catalog (gCMT), revealing statistical significance between the extracted acoustic properties used to feed machine learning algorithms and the predicted slip and magnitude values.
水下地震事件会产生携带震源信息的声学辐射(如重力波),这些辐射可以在消散之前传播很长的距离。为了实现对地震和海啸的有效预警、应急响应和信息传播,需要快速描述断层的性质:几何形状和动力学。在这项工作中,我们通过声学信号处理和分类方法,对位于太平洋和印度洋的 201 次地震的水听器记录进行了分析。该分析可以识别地震的类型(即滑动类型、震级),并提供断层动力学和几何形状的有效特性的近乎实时估计。我们将结果与哈佛全球震源矩张量目录(gCMT)报告的值进行了比较,结果表明,用于为机器学习算法提供信息的提取声学特性与预测的滑动和震级值之间存在统计学意义。