Suppr超能文献

一种改良的多孔硅微粒可促进严重急性呼吸综合征冠状病毒2(SARS-CoV-2)抗原的黏膜递送,并诱导强大而持久的全身和黏膜辅助性T细胞1偏向性保护性免疫。

A modified porous silicon microparticle promotes mucosal delivery of SARS-CoV-2 antigen and induction of potent and durable systemic and mucosal T helper 1 skewed protective immunity.

作者信息

Adam Awadalkareem, Shi Qing, Wang Binbin, Zou Jing, Mai Junhua, Osman Samantha R, Wu Wenzhe, Xie Xuping, Aguilar Patricia V, Bao Xiaoyong, Shi Pei-Yong, Shen Haifa, Wang Tian

出版信息

bioRxiv. 2021 Nov 24:2021.11.22.469576. doi: 10.1101/2021.11.22.469576.

Abstract

Development of optimal SARS-CoV-2 vaccines to induce potent, long-lasting immunity and provide cross-reactive protection against emerging variants remains a high priority. Here, we report that a modified porous silicon microparticle (mPSM)-adjuvanted SARS-CoV-2 receptor-binding domain (RBD) vaccine activated dendritic cells and generated more potent and durable SARS-CoV-2-specific systemic humoral and type 1 helper T (Th) cell-mediated immune responses than alum-formulated RBD following parenteral vaccination, and protected mice from SARS-CoV-2 and Beta variant infection. mPSM facilitated the uptake of SARS-CoV-2 RBD antigens by nasal and airway epithelial cells. Parenteral and intranasal prime and boost vaccinations with mPSM-RBD elicited potent systemic and lung resident memory T and B cells and SARS-CoV-2 specific IgA responses, and markedly diminished viral loads and inflammation in the lung following SARS-CoV-2 Delta variant infection. Our results suggest that mPSM can serve as potent adjuvant for SARS-CoV-2 subunit vaccine which is effective for systemic and mucosal vaccination.

摘要

开发最佳的严重急性呼吸综合征冠状病毒2(SARS-CoV-2)疫苗以诱导强效、持久的免疫力并提供针对新出现变体的交叉反应保护仍然是当务之急。在此,我们报告,一种经修饰的多孔硅微粒(mPSM)佐剂的SARS-CoV-2受体结合域(RBD)疫苗在经肠胃外接种后,比明矾配方的RBD激活树突状细胞并产生更强效和持久的SARS-CoV-2特异性全身体液免疫和1型辅助性T(Th)细胞介导的免疫反应,并保护小鼠免受SARS-CoV-2和贝塔变体感染。mPSM促进鼻和气道上皮细胞摄取SARS-CoV-2 RBD抗原。用mPSM-RBD进行肠胃外和鼻内初免和加强接种可引发强效的全身和肺驻留记忆T和B细胞以及SARS-CoV-2特异性IgA反应,并在SARS-CoV-2德尔塔变体感染后显著降低肺部病毒载量和炎症。我们的结果表明,mPSM可作为SARS-CoV-2亚单位疫苗的强效佐剂,对全身和黏膜接种均有效。

相似文献

引用本文的文献

2
Understanding 3D genome organization by multidisciplinary methods.用多学科方法理解三维基因组结构。
Nat Rev Mol Cell Biol. 2021 Aug;22(8):511-528. doi: 10.1038/s41580-021-00362-w. Epub 2021 May 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验