Almeida Frederico M, Colosimo Enrico A, Mayrink Vinícius D
Departamento de Estatística, ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
Biom J. 2022 Mar;64(3):635-654. doi: 10.1002/bimj.202000254. Epub 2021 Nov 30.
The cure fraction models are intended to analyze lifetime data from populations where some individuals are immune to the event under study, and allow a joint estimation of the distribution related to the cured and susceptible subjects, as opposed to the usual approach ignoring the cure rate. In situations involving small sample sizes with many censored times, the detection of nonfinite coefficients may arise via maximum likelihood. This phenomenon is commonly known as monotone likelihood (ML), occurring in the Cox and logistic regression models when many categorical and unbalanced covariates are present. An existing solution to prevent the issue is based on the Firth correction, originally developed to reduce the estimation bias. The method ensures finite estimates by penalizing the likelihood function. In the context of mixture cure models, the ML issue is rarely discussed in the literature; therefore, this topic can be seen as the first contribution of our paper. The second major contribution, not well addressed elsewhere, is the study of the ML issue in cure mixture modeling under the flexibility of a semiparametric framework to handle the baseline hazard. We derive the modified score function based on the Firth approach and explore finite sample size properties of the estimators via a Monte Carlo scheme. The simulation results indicate that the performance of coefficients related to the binary covariates are strongly affected to the imbalance degree. A real illustration, in the melanoma dataset, is discussed using a relatively novel data set collected in a Brazilian university hospital.
治愈分数模型旨在分析来自某些个体对所研究事件具有免疫性的总体的生存数据,并允许对与治愈和易感个体相关的分布进行联合估计,这与忽略治愈率的常规方法相反。在涉及小样本量且有许多删失时间的情况下,通过最大似然法可能会出现非有限系数的检测问题。这种现象通常被称为单调似然(ML),当存在许多分类且不平衡的协变量时,在Cox回归模型和逻辑回归模型中都会出现。一种防止该问题的现有解决方案基于Firth校正,它最初是为减少估计偏差而开发的。该方法通过对似然函数进行惩罚来确保有限估计。在混合治愈模型的背景下,文献中很少讨论ML问题;因此,这个主题可以被视为我们论文的第一个贡献。第二个主要贡献在其他地方没有得到很好的解决,即在半参数框架的灵活性下研究治愈混合模型中的ML问题,以处理基线风险。我们基于Firth方法推导了修正得分函数,并通过蒙特卡罗方案探索了估计量的有限样本量性质。模拟结果表明,与二元协变量相关的系数的性能受到不平衡程度的强烈影响。使用巴西一家大学医院收集的相对新颖的数据集,对黑色素瘤数据集中的一个实际例子进行了讨论。