Suppr超能文献

广谱抗病毒纳米颗粒和 HPV16 衣壳片段的病毒杀灭抑制机制的计算建模。

Computational Modeling of the Virucidal Inhibition Mechanism for Broad-Spectrum Antiviral Nanoparticles and HPV16 Capsid Segments.

机构信息

Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States.

出版信息

J Phys Chem B. 2021 Dec 9;125(48):13122-13131. doi: 10.1021/acs.jpcb.1c07436. Epub 2021 Nov 30.

Abstract

Solid core nanoparticles (NPs) coated with sulfonated ligands that mimic heparan sulfate proteoglycans (HSPGs) can exhibit virucidal activity against many viruses that utilize HSPG interactions with host cells for the initial stages of infection. How the interactions of these NPs with large capsid segments of HSPG-interacting viruses lead to their virucidal activity has been unclear. Here, we describe the interactions between sulfonated NPs and segments of the human papilloma virus type 16 (HPV16) capsids using atomistic molecular dynamics simulations. The simulations demonstrate that the NPs primarily bind at the interfaces of two HPV16 capsid proteins. After equilibration, the distances and angles between capsid proteins in the capsid segments are larger for the systems in which the NPs bind at the interfaces of capsid proteins. Over time, NP binding can lead to breaking of contacts between two neighboring proteins. The revealed mechanism of NPs targeting the interfaces between pairs of capsid proteins can be utilized for designing new generations of virucidal materials and contribute to the development of new broad-spectrum non-toxic virucidal materials.

摘要

固核纳米粒子(NPs)表面覆盖有模拟硫酸乙酰肝素蛋白聚糖(HSPG)的磺酸配体,对许多利用 HSPG 与宿主细胞相互作用进行初始感染阶段的病毒具有病毒杀灭活性。这些 NPs 与 HSPG 相互作用的病毒的大衣壳片段相互作用如何导致其病毒杀灭活性尚不清楚。在这里,我们使用原子分子动力学模拟描述了磺化 NPs 与人类乳头瘤病毒 16 型(HPV16)衣壳片段之间的相互作用。模拟表明, NPs 主要结合在 HPV16 衣壳蛋白的界面上。平衡后,在 NPs 结合在衣壳蛋白界面的系统中,衣壳片段中衣壳蛋白之间的距离和角度更大。随着时间的推移,NP 结合可能导致两个相邻蛋白之间的接触破裂。所揭示的 NPs 靶向衣壳蛋白对之间界面的机制可用于设计新一代的病毒杀灭材料,并有助于开发新的广谱无毒病毒杀灭材料。

相似文献

1
Computational Modeling of the Virucidal Inhibition Mechanism for Broad-Spectrum Antiviral Nanoparticles and HPV16 Capsid Segments.
J Phys Chem B. 2021 Dec 9;125(48):13122-13131. doi: 10.1021/acs.jpcb.1c07436. Epub 2021 Nov 30.
2
Broad-spectrum non-toxic antiviral nanoparticles with a virucidal inhibition mechanism.
Nat Mater. 2018 Feb;17(2):195-203. doi: 10.1038/nmat5053. Epub 2017 Dec 18.
4
Ligand concentration determines antiviral efficacy of silica multivalent nanoparticles.
J Colloid Interface Sci. 2024 Mar;657:327-333. doi: 10.1016/j.jcis.2023.11.122. Epub 2023 Nov 23.
6
Peptide inhibitors of viral assembly: a novel route to broad-spectrum antivirals.
J Chem Inf Model. 2012 Mar 26;52(3):770-6. doi: 10.1021/ci200467s. Epub 2012 Mar 6.
7
GSH-ZnS Nanoparticles Exhibit High-Efficiency and Broad-Spectrum Antiviral Activities via Multistep Inhibition Mechanisms.
ACS Appl Bio Mater. 2020 Aug 17;3(8):4809-4819. doi: 10.1021/acsabm.0c00332. Epub 2020 Jul 13.
9
Molecular mechanism of a specific capsid binder resistance caused by mutations outside the binding pocket.
Antiviral Res. 2015 Nov;123:138-45. doi: 10.1016/j.antiviral.2015.09.009. Epub 2015 Sep 25.
10
Discovery and Mechanistic Study of Benzamide Derivatives That Modulate Hepatitis B Virus Capsid Assembly.
J Virol. 2017 Jul 27;91(16). doi: 10.1128/JVI.00519-17. Print 2017 Aug 15.

引用本文的文献

1
Sulfoglycodendron Antivirals with Scalable Architectures and Activities.
J Chem Inf Model. 2024 Sep 23;64(18):7141-7151. doi: 10.1021/acs.jcim.4c00541. Epub 2024 Sep 4.
2
Sulfoglycodendron Antivirals with Scalable Architectures and Activities.
bioRxiv. 2024 Aug 18:2024.08.01.606251. doi: 10.1101/2024.08.01.606251.

本文引用的文献

1
Computational and Experimental Approaches to Controlling Bacterial Microcompartment Assembly.
ACS Cent Sci. 2021 Apr 28;7(4):658-670. doi: 10.1021/acscentsci.0c01699. Epub 2021 Apr 13.
2
Prospective mapping of viral mutations that escape antibodies used to treat COVID-19.
Science. 2021 Feb 19;371(6531):850-854. doi: 10.1126/science.abf9302. Epub 2021 Jan 25.
5
Scalable molecular dynamics on CPU and GPU architectures with NAMD.
J Chem Phys. 2020 Jul 28;153(4):044130. doi: 10.1063/5.0014475.
6
Multi-sulfonated ligands on gold nanoparticles as virucidal antiviral for Dengue virus.
Sci Rep. 2020 Jun 3;10(1):9052. doi: 10.1038/s41598-020-65892-3.
7
Modified cyclodextrins as broad-spectrum antivirals.
Sci Adv. 2020 Jan 29;6(5):eaax9318. doi: 10.1126/sciadv.aax9318. eCollection 2020 Jan.
8
Computational screening of nanoparticles coupling to Aβ40 peptides and fibrils.
Sci Rep. 2019 Nov 28;9(1):17804. doi: 10.1038/s41598-019-52594-8.
9
Broad-Spectrum Antiviral Agents: A Crucial Pandemic Tool.
Expert Rev Anti Infect Ther. 2019 Jul;17(7):467-470. doi: 10.1080/14787210.2019.1635009. Epub 2019 Jun 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验