Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas 79968, United States.
Computational Science Program, The University of Texas at El Paso, El Paso, Texas 79968, United States.
J Am Chem Soc. 2024 May 8;146(18):12766-12777. doi: 10.1021/jacs.4c02934. Epub 2024 Apr 24.
Per- and polyfluoroalkyl substances (PFAS) pose significant health risks due to their widespread presence in various environmental and biological matrices. However, the molecular-level mechanisms underlying the interactions between PFAS and biological constituents, including proteins, carbohydrates, lipids, and DNA, remain poorly understood. Here, we investigate the interactions between a legacy PFAS, viz. perfluorooctanoic acid (PFOA), and the milk protein β-lactoglobulin (BLG) obtained using a combination of experimental and computational techniques. Circular dichroism studies reveal that PFOA perturbs the secondary structure of BLG, by driving a dose-dependent loss of α-helicity and alterations in its β-sheet content. Furthermore, exposure of the protein to PFOA attenuates the on-rate constant for the binding of the hydrophobic probe 8-anilino-1-naphthalene sulfonic acid (ANS), suggesting potential functional impairment of BLG by PFOA. Steered molecular dynamics and umbrella sampling calculations reveal that PFOA binding leads to the formation of an energetically favorable novel binding pocket within the protein, when residues 129-142 are steered to unfold from their initial α-helical structure, wherein a host of intermolecular interactions between PFOA and BLG's residues serve to insert the PFOA into the region between the unfolded helix and beta-sheets. Together, the data provide a novel understanding of the atomic and molecular mechanism(s) by which PFAS modulates structure and function in a globular protein, leading to a beginning of our understanding of altered biological outcomes.
全氟和多氟烷基物质 (PFAS) 由于其广泛存在于各种环境和生物基质中,对健康构成了重大威胁。然而,PFAS 与包括蛋白质、碳水化合物、脂质和 DNA 在内的生物成分相互作用的分子水平机制仍知之甚少。在这里,我们使用实验和计算相结合的方法研究了一种传统的 PFAS,即全氟辛酸 (PFOA) 与乳蛋白 β-乳球蛋白 (BLG) 之间的相互作用。圆二色性研究表明,PFOA 通过驱动 α-螺旋含量的剂量依赖性丧失和 β-折叠含量的变化,扰乱 BLG 的二级结构。此外,蛋白质暴露于 PFOA 会降低疏水性探针 8-苯胺-1-萘磺酸 (ANS) 结合的上速率常数,这表明 PFOA 可能会损害 BLG 的功能。导向分子动力学和伞状采样计算表明,当残基 129-142 从其初始α-螺旋结构展开时,PFOA 结合会在蛋白质内形成一个能量有利的新结合口袋,其中 PFOA 与 BLG 残基之间存在多种分子间相互作用,将 PFOA 插入展开的螺旋和 β-折叠之间的区域。总之,这些数据提供了对 PFAS 如何调节球形蛋白质结构和功能的原子和分子机制的新认识,为我们理解改变的生物学结果奠定了基础。