Department of Chemical and Biomolecular Engineering, University of California - Los Angeles, Los Angeles, California 90095, United States.
Partillion Bioscience, Los Angeles, California 90095, United States.
ACS Nano. 2022 Jan 25;16(1):38-49. doi: 10.1021/acsnano.1c05857. Epub 2021 Nov 30.
Microparticles with defined shapes and spatial chemical modification can interface with cells and tissues at the cellular scale. However, conventional methods to fabricate shaped microparticles have trade-offs between the throughput of manufacture and the precision of particle shape and chemical functionalization. Here, we achieved scalable production of hydrogel microparticles at rates of greater than 40 million/hour with localized surface chemistry using a parallelized step emulsification device and temperature-induced phase-separation. The approach harnesses a polymerizable polyethylene glycol (PEG) and gelatin aqueous two-phase system (ATPS) which conditionally phase separates within microfluidically generated droplets. Following droplet formation, phase separation is induced and phase separated droplets are subsequently cross-linked to form uniform crescent and hollow shell particles with gelatin functionalization on the boundary of the cavity. The gelatin localization enabled deterministic cell loading in subnanoliter-sized crescent-shaped particles, which we refer to as nanovials, with cavity dimensions tuned to the size of cells. Loading on nanovials also imparted improved cell viability during analysis and sorting using standard fluorescence activated cell sorters, presumably by protecting cells from shear stress. This localization effect was further exploited to selectively functionalize capture antibodies to nanovial cavities enabling single-cell secretion assays with reduced cross-talk in a simplified format.
具有特定形状和空间化学修饰的微粒可以在细胞尺度上与细胞和组织相互作用。然而,传统的制造形状微粒的方法在制造的通量和颗粒形状及化学功能化的精度之间存在权衡。在这里,我们使用并行化的分步乳化装置和温度诱导相分离,以大于 4000 万个/小时的速率实现了水凝胶微粒的规模化生产,并实现了局部表面化学。该方法利用了可聚合的聚乙二醇(PEG)和明胶双水相体系(ATPS),该体系在微流控生成的液滴内条件性地相分离。形成液滴后,诱导相分离,然后将相分离的液滴交联,形成具有明胶功能化的均匀新月形和中空壳微粒,明胶定位于空腔的边界。明胶的定位使得能够在亚纳升级新月形微粒(我们称之为纳米小瓶)中进行确定性细胞加载,其腔室尺寸可根据细胞大小进行调整。在使用标准荧光激活细胞分选器进行分析和分选时,纳米小瓶的加载还赋予了细胞更好的活力,这可能是通过保护细胞免受剪切力的影响。这种定位效应进一步被利用来选择性地将捕获抗体功能化到纳米小瓶腔中,从而在简化的格式中进行具有减少串扰的单细胞分泌测定。