Holland Theresa A, Tabata Yasuhiko, Mikos Antonios G
Department of Bioengineering, Rice University, P.O. Box 1892, MS 142, Houston, TX 77251-1892, USA.
J Control Release. 2003 Sep 4;91(3):299-313. doi: 10.1016/s0168-3659(03)00258-x.
This research investigates the in vitro release of transforming growth factor-beta1 (TGF-beta1) from novel, injectable hydrogels based on the polymer oligo(poly(ethylene glycol) fumarate) (OPF). These hydrogels can be used to encapsulate TGF-beta1-loaded-gelatin microparticles and can be crosslinked at physiological conditions within a clinically relevant time period. Experiments revealed that OPF formulation and crosslinking time may be adjusted to influence the equilibrium swelling ratio, elastic modulus, strain at fracture, and mesh size of these hydrogels. Studies with OPF-gelatin microparticle composites revealed that OPF formulation and crosslinking time, as well as microparticle loading and crosslinking extent, influence composite swelling. In vitro TGF-beta1 release studies demonstrated that burst release from OPF hydrogels with a mesh size of 136 A was approximately 53%, while burst release from hydrogels with a mesh size of 93 A was only 34%. For hydrogels with a large mesh size (136 A), encapsulation of loaded gelatin microparticles allowed burst release to be reduced to 29-32%, depending on microparticle loading. Likewise, final cumulative release after 28 days was reduced from 71% to 48-66% by encapsulation of loaded microparticles. However, inclusion of gelatin microparticles within OPF hydrogels of smaller mesh size (93 A) was seen to increase TGF-beta1 release rates. The equilibrium swelling ratio of the microparticle component of these composites was shown to be greater than the equilibrium swelling ratio of the OPF component. Therefore, increased release rates are the result of disruption of the polymer network during swelling. These combined results indicate that the kinetics of TGF-beta1 release can be controlled by adjusting OPF formulation and microparticle loading, factors affecting the swelling behavior these composites. By systematically altering these parameters, in vitro release rates from hydrogels and composites loaded with TGF-beta1 at concentrations of 200 ng/ml can be varied from 13 to 170 pg TGF-beta1/day for days 1-3 and from 7 to 47 pg TGF-beta1/day for days 6-21. Therefore, these studies demonstrate the potential of these novel hydrogels and composites in the sustained delivery of low dosages of TGF-beta1 to articular cartilage defects.
本研究调查了基于聚合物聚(乙二醇)富马酸酯(OPF)的新型可注射水凝胶中转化生长因子-β1(TGF-β1)的体外释放情况。这些水凝胶可用于封装负载TGF-β1的明胶微粒,并能在生理条件下于临床相关时间段内交联。实验表明,可调整OPF配方和交联时间以影响这些水凝胶的平衡溶胀率、弹性模量、断裂应变和网孔尺寸。对OPF-明胶微粒复合材料的研究表明,OPF配方和交联时间以及微粒负载量和交联程度会影响复合材料的溶胀。体外TGF-β1释放研究表明,网孔尺寸为136 Å的OPF水凝胶的突释约为53%,而网孔尺寸为93 Å的水凝胶的突释仅为34%。对于网孔尺寸较大(136 Å)的水凝胶,负载明胶微粒的封装可使突释降低至29 - 32%,具体取决于微粒负载量。同样,通过封装负载微粒,28天后的最终累积释放从71%降至48 - 66%。然而,在网孔尺寸较小(93 Å)的OPF水凝胶中加入明胶微粒会提高TGF-β1的释放速率。这些复合材料的微粒组分的平衡溶胀率大于OPF组分的平衡溶胀率。因此,释放速率的提高是溶胀过程中聚合物网络破坏的结果。这些综合结果表明,通过调整OPF配方和微粒负载量(影响这些复合材料溶胀行为的因素),可以控制TGF-β1的释放动力学。通过系统地改变这些参数,对于浓度为200 ng/ml的负载TGF-β1的水凝胶和复合材料,在第1 - 3天,体外释放速率可在13至170 pg TGF-β1/天之间变化,在第6 - 21天,可在7至47 pg TGF-β1/天之间变化。因此,这些研究证明了这些新型水凝胶和复合材料在向关节软骨缺损持续递送低剂量TGF-β1方面的潜力。