Aronow B, Ullman B
J Biol Chem. 1986 Feb 15;261(5):2014-9.
Genetic deficiencies in the nucleoside transport function markedly altered the abilities of cultured mutant S49 T lymphoblasts to transport, incorporate, and salvage exogenous hypoxanthine. The concentrations of exogenous hypoxanthine required to reverse azaserine toxicity and replenish azaserine-depleted nucleoside triphosphate pools in AE1 cells, a nucleoside transport-deficient clone, were about 10-fold higher than those required for wild type cells. In a similar fashion, guanine could reverse mycophenolic acid toxicity in wild type but not in AE1 cells. Surprisingly, a second nucleoside transport-deficient clone, 80-5D2, which had lost 80-90% of its ability to transport nucleosides, required lower hypoxanthine concentrations than the wild type parent to reverse these azaserine-mediated effects. The addition of submicromolar concentrations of either p-nitrobenzylthioinosine or dipyridamole, two potent inhibitors of nucleoside transport, to wild type cells mimicked the phenotype of the AE1 cells with respect to hypoxanthine. AE1 cells or p-nitrobenzylthioinosine-treated wild type cells could only transport hypoxanthine at 10-25% the rate of untreated wild type cells, whereas 80-5D2 cells could transport hypoxanthine more efficiently. Adenine transport was also diminished in AE1 and FURD-80-3-6 cells, but not to sufficiently low levels to interfere with their ability to salvage adenine to overcome azaserine toxicity. These studies on S49 cells altered in their nucleoside transport capacity provide powerful genetic evidence that purine nucleobases share a common transport function with nucleosides in these mammalian T lymphoblasts.
核苷转运功能的遗传缺陷显著改变了培养的突变型S49 T淋巴母细胞转运、掺入和挽救外源性次黄嘌呤的能力。在核苷转运缺陷克隆AE1细胞中,逆转重氮丝氨酸毒性并补充重氮丝氨酸耗尽的核苷三磷酸池所需的外源性次黄嘌呤浓度比野生型细胞所需的浓度高约10倍。同样,鸟嘌呤可逆转野生型细胞中的霉酚酸毒性,但不能逆转AE1细胞中的毒性。令人惊讶的是,第二个核苷转运缺陷克隆80-5D2,其转运核苷的能力丧失了80-90%,但逆转这些重氮丝氨酸介导的效应所需的次黄嘌呤浓度低于野生型亲本。向野生型细胞中添加亚微摩尔浓度的对硝基苄硫基肌苷或双嘧达莫这两种有效的核苷转运抑制剂,在次黄嘌呤方面模拟了AE1细胞的表型。AE1细胞或经对硝基苄硫基肌苷处理的野生型细胞转运次黄嘌呤的速率仅为未处理野生型细胞的10-25%,而80-5D2细胞转运次黄嘌呤的效率更高。AE1和FURD-80-3-6细胞中的腺嘌呤转运也减少了,但未降至足够低的水平以干扰它们挽救腺嘌呤以克服重氮丝氨酸毒性的能力。这些对核苷转运能力发生改变的S49细胞的研究提供了有力的遗传学证据,表明嘌呤核碱基在这些哺乳动物T淋巴母细胞中与核苷具有共同的转运功能。