Suppr超能文献

饥饿诱导的核蛋白酶体组装将氨基酸供应与细胞凋亡联系起来。

Starvation-induced proteasome assemblies in the nucleus link amino acid supply to apoptosis.

机构信息

Department of Biochemistry and Molecular Medicine, University of Montréal, H3C 3J7, Montreal, QC, Canada.

Maisonneuve-Rosemont Hospital Research Center, Montréal, QC, H1T 2M4, Canada.

出版信息

Nat Commun. 2021 Nov 30;12(1):6984. doi: 10.1038/s41467-021-27306-4.

Abstract

Eukaryotic cells have evolved highly orchestrated protein catabolic machineries responsible for the timely and selective disposal of proteins and organelles, thereby ensuring amino acid recycling. However, how protein degradation is coordinated with amino acid supply and protein synthesis has remained largely elusive. Here we show that the mammalian proteasome undergoes liquid-liquid phase separation in the nucleus upon amino acid deprivation. We termed these proteasome condensates SIPAN (Starvation-Induced Proteasome Assemblies in the Nucleus) and show that these are a common response of mammalian cells to amino acid deprivation. SIPAN undergo fusion events, rapidly exchange proteasome particles with the surrounding milieu and quickly dissolve following amino acid replenishment. We further show that: (i) SIPAN contain K48-conjugated ubiquitin, (ii) proteasome inhibition accelerates SIPAN formation, (iii) deubiquitinase inhibition prevents SIPAN resolution and (iv) RAD23B proteasome shuttling factor is required for SIPAN formation. Finally, SIPAN formation is associated with decreased cell survival and p53-mediated apoptosis, which might contribute to tissue fitness in diverse pathophysiological conditions.

摘要

真核细胞已经进化出高度协调的蛋白质降解机器,负责及时和选择性地处理蛋白质和细胞器,从而确保氨基酸的回收利用。然而,蛋白质降解如何与氨基酸供应和蛋白质合成相协调,在很大程度上仍然难以捉摸。在这里,我们发现哺乳动物蛋白酶体在氨基酸饥饿时会在核内发生液-液相分离。我们将这些蛋白酶体凝聚物命名为 SIPAN(Starvation-Induced Proteasome Assemblies in the Nucleus),并表明这是哺乳动物细胞对氨基酸饥饿的一种常见反应。SIPAN 发生融合事件,与周围环境快速交换蛋白酶体颗粒,并在氨基酸补充后迅速溶解。我们进一步表明:(i)SIPAN 含有 K48 连接的泛素,(ii)蛋白酶体抑制加速了 SIPAN 的形成,(iii)去泛素化酶抑制阻止了 SIPAN 的解析,(iv)RAD23B 蛋白酶体穿梭因子是 SIPAN 形成所必需的。最后,SIPAN 的形成与细胞存活减少和 p53 介导的细胞凋亡有关,这可能有助于在多种病理生理条件下组织的适应性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b8cf/8633328/efc15c6830ac/41467_2021_27306_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验