Laboratory of Genetically Encoded Small Molecules, The Rockefeller Universitygrid.134907.8, New York, New York, USA.
Laboratory of Virology and Infectious Disease, The Rockefeller Universitygrid.134907.8, New York, New York, USA.
mSphere. 2021 Dec 22;6(6):e0071121. doi: 10.1128/mSphere.00711-21. Epub 2021 Dec 1.
The COVID-19 pandemic has highlighted the need to identify additional antiviral small molecules to complement existing therapies. Although increasing evidence suggests that metabolites produced by the human microbiome have diverse biological activities, their antiviral properties remain poorly explored. Using a cell-based SARS-CoV-2 infection assay, we screened culture broth extracts from a collection of phylogenetically diverse human-associated bacteria for the production of small molecules with antiviral activity. Bioassay-guided fractionation uncovered three bacterial metabolites capable of inhibiting SARS-CoV-2 infection. This included the nucleoside analogue N-(Δ-isopentenyl)adenosine, the 5-hydroxytryptamine receptor agonist tryptamine, and the pyrazine 2,5-bis(3-indolylmethyl)pyrazine. The most potent of these, N-(Δ-isopentenyl)adenosine, had a 50% inhibitory concentration (IC) of 2 μM. These natural antiviral compounds exhibit structural and functional similarities to synthetic drugs that have been clinically examined for use against COVID-19. Our discovery of structurally diverse metabolites with anti-SARS-CoV-2 activity from screening a small fraction of the bacteria reported to be associated with the human microbiome suggests that continued exploration of phylogenetically diverse human-associated bacteria is likely to uncover additional small molecules that inhibit SARS-CoV-2 as well as other viral infections. The continued prevalence of COVID-19 and the emergence of new variants has once again put the spotlight on the need for the identification of SARS-CoV-2 antivirals. The human microbiome produces an array of small molecules with bioactivities (e.g., host receptor ligands), but its ability to produce antiviral small molecules is relatively underexplored. Here, using a cell-based screening platform, we describe the isolation of three microbiome-derived metabolites that are able to prevent SARS-CoV-2 infection . These molecules display structural similarities to synthetic drugs that have been explored for the treatment of COVID-19, and these results suggest that the microbiome may be a fruitful source of the discovery of small molecules with antiviral activities.
新型冠状病毒肺炎疫情凸显了需要寻找其他抗病毒小分子来补充现有疗法的必要性。尽管越来越多的证据表明,人类微生物组产生的代谢产物具有多种生物学活性,但它们的抗病毒特性仍未得到充分探索。我们使用基于细胞的 SARS-CoV-2 感染测定法,筛选了来自具有不同进化亲缘关系的人类相关细菌培养物提取液,以寻找具有抗病毒活性的小分子。生物测定指导的分级分离揭示了三种能够抑制 SARS-CoV-2 感染的细菌代谢产物。其中包括核苷类似物 N-(Δ-异戊烯基)腺苷、5-羟色胺受体激动剂色胺和吡嗪 2,5-双(3-吲哚基甲基)吡嗪。其中最有效的 N-(Δ-异戊烯基)腺苷的 50%抑制浓度 (IC) 为 2 μM。这些天然抗病毒化合物在结构和功能上与已在临床上用于治疗 COVID-19 的合成药物相似。我们从与人类微生物组相关的一小部分细菌中筛选出具有抗 SARS-CoV-2 活性的结构多样的代谢产物,这表明继续探索具有不同进化亲缘关系的人类相关细菌很可能会发现其他抑制 SARS-CoV-2 以及其他病毒感染的小分子。新型冠状病毒肺炎的持续流行和新变种的出现再次凸显了识别 SARS-CoV-2 抗病毒药物的必要性。人类微生物组产生了一系列具有生物活性的小分子(例如,宿主受体配体),但其产生抗病毒小分子的能力尚未得到充分探索。在这里,我们使用基于细胞的筛选平台,描述了三种能够预防 SARS-CoV-2 感染的微生物组衍生代谢产物的分离。这些分子与已被探索用于治疗 COVID-19 的合成药物具有结构相似性,这些结果表明微生物组可能是发现具有抗病毒活性的小分子的丰富来源。