Suppr超能文献

过渡金属二硫属化物的自限性光电化学减薄

Self-Limiting Opto-Electrochemical Thinning of Transition-Metal Dichalcogenides.

作者信息

Huang Suichu, Li Jingang, Fang Jie, Ding Hongru, Huang Wentao, Zhao Xuezeng, Zheng Yuebing

机构信息

Key Laboratory of Micro-Systems and Micro-Structures Manufacturing of Ministry of Education and School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 15001, China.

Walker Department of Mechanical Engineering, Material Science and Engineering Program and Texas Material Institute, The University of Texas at Austin, Austin, Texas 78712, United States.

出版信息

ACS Appl Mater Interfaces. 2021 Dec 15;13(49):58966-58973. doi: 10.1021/acsami.1c19163. Epub 2021 Dec 1.

Abstract

Two-dimensional monolayer and few-layer transition-metal dichalcogenides (TMDs) are promising for advanced electronic and photonic applications due to their extraordinary optoelectronic and mechanical properties. However, it has remained challenging to produce high-quality TMD thin films with controlled thickness and desired micropatterns, which are essential for their practical implementation in functional devices. In this work, a self-limiting opto-electrochemical thinning (sOET) technique is developed for on-demand thinning and patterning of TMD flakes at high efficiency. Benefiting from optically enhanced electrochemical reactions, sOET features a low operational optical power density of down to 70 μW μm to avoid photodamage and thermal damage to the thinned TMD flakes. Through selective optical excitation with different laser wavelengths based on the thickness-dependent band gaps of TMD materials, sOET enables precise control over the final thickness of TMD flakes. With the capability of thickness control and site-specific patterning, our sOET offers an effective route to fabricating high-quality TMD materials for a broad range of applications in nanoelectronics, nanomechanics, and nanophotonics.

摘要

二维单层和少层过渡金属二硫属化物(TMDs)因其优异的光电和机械性能,在先进电子和光子应用方面颇具前景。然而,制备具有可控厚度和所需微图案的高质量TMD薄膜仍然具有挑战性,而这些对于其在功能器件中的实际应用至关重要。在这项工作中,开发了一种自限性光电化学减薄(sOET)技术,用于高效按需减薄和图案化TMD薄片。受益于光学增强的电化学反应,sOET的工作光功率密度低至70 μW/μm,可避免对减薄后的TMD薄片造成光损伤和热损伤。通过基于TMD材料厚度依赖的带隙,用不同激光波长进行选择性光激发,sOET能够精确控制TMD薄片的最终厚度。凭借厚度控制和特定位置图案化的能力,我们的sOET为制造用于纳米电子学、纳米力学和纳米光子学广泛应用的高质量TMD材料提供了一条有效途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验