Mao Aihua, Dai Canglan, Liu Qing, Yang Jie, Gao Lin, He Ying, Liu Yong-Jin
IEEE Trans Vis Comput Graph. 2023 Mar;29(3):1785-1798. doi: 10.1109/TVCG.2021.3131712. Epub 2023 Jan 30.
3D reconstruction from single-view images is a long-standing research problem. There have been various methods based on point clouds and volumetric representations. In spite of success in 3D models generation, it is quite challenging for these approaches to deal with models with complex topology and fine geometric details. Thanks to the recent advance of deep shape representations, learning the structure and detail representation using deep neural networks is a promising direction. In this article, we propose a novel approach named STD-Net to reconstruct 3D models utilizing mesh representation that is well suited for characterizing complex structures and geometry details. Our method consists of (1) an auto-encoder network for recovering the structure of an object with bounding box representation from a single-view image; (2) a topology-adaptive GCN for updating vertex position for meshes of complex topology; and (3) a unified mesh deformation block that deforms the structural boxes into structure-aware meshes. Evaluation on ShapeNet and PartNet shows that STD-Net has better performance than state-of-the-art methods in reconstructing complex structures and fine geometric details.
从单视图图像进行三维重建是一个长期存在的研究问题。已经有各种基于点云与体素表示的方法。尽管在三维模型生成方面取得了成功,但这些方法处理具有复杂拓扑结构和精细几何细节的模型仍颇具挑战性。得益于深度形状表示的最新进展,利用深度神经网络学习结构和细节表示是一个很有前景的方向。在本文中,我们提出了一种名为STD-Net的新颖方法,利用非常适合表征复杂结构和几何细节的网格表示来重建三维模型。我们的方法包括:(1)一个自动编码器网络,用于从单视图图像中恢复具有边界框表示的物体结构;(2)一个拓扑自适应图卷积网络,用于更新复杂拓扑结构网格的顶点位置;以及(3)一个统一的网格变形模块,将结构框变形为具有结构感知的网格。在ShapeNet和PartNet上的评估表明,在重建复杂结构和精细几何细节方面,STD-Net比现有方法具有更好的性能。