Suppr超能文献

通过视图相关深度采样从单张草图进行 3D 重建

3D Reconstruction From a Single Sketch via View-Dependent Depth Sampling.

作者信息

Gao Chenjian, Wang Xilin, Yu Qian, Sheng Lu, Zhang Jing, Han Xiaoguang, Song Yi-Zhe, Xu Dong

出版信息

IEEE Trans Pattern Anal Mach Intell. 2024 Dec;46(12):9661-9676. doi: 10.1109/TPAMI.2024.3424404. Epub 2024 Nov 6.

Abstract

Reconstructing a 3D shape based on a single sketch image is challenging due to the inherent sparsity and ambiguity present in sketches. Existing methods lose fine details when extracting features to predict 3D objects from sketches. Upon analyzing the 3D-to-2D projection process, we observe that the density map, characterizing the distribution of 2D point clouds, can serve as a proxy to facilitate the reconstruction process. In this work, we propose a novel sketch-based 3D reconstruction model named SketchSampler. It initiates the process by translating a sketch through an image translation network into a more informative 2D representation, which is then used to generate a density map. Subsequently, a two-stage probabilistic sampling process is employed to reconstruct a 3D point cloud: first, recovering the 2D points (i.e., the x and y coordinates) by sampling the density map; and second, predicting the depth (i.e., the z coordinate) by sampling the depth values along the ray determined by each 2D point. Additionally, we convert the reconstructed point cloud into a 3D mesh for wider applications. To reduce ambiguity, we incorporate hidden lines in sketches. Experimental results demonstrate that our proposed approach significantly outperforms other baseline methods.

摘要

基于单个草图图像重建三维形状具有挑战性,因为草图中存在固有的稀疏性和模糊性。现有方法在从草图中提取特征以预测三维物体时会丢失精细细节。在分析三维到二维的投影过程时,我们观察到表征二维点云分布的密度图可以作为促进重建过程的代理。在这项工作中,我们提出了一种名为SketchSampler的基于草图的新型三维重建模型。它通过图像翻译网络将草图转换为更具信息性的二维表示来启动该过程,然后使用该表示生成密度图。随后,采用两阶段概率采样过程来重建三维点云:首先,通过对密度图进行采样来恢复二维点(即x和y坐标);其次,通过对由每个二维点确定的光线方向上的深度值进行采样来预测深度(即z坐标)。此外,我们将重建的点云转换为三维网格以用于更广泛的应用。为了减少模糊性,我们在草图中加入了隐藏线。实验结果表明,我们提出的方法明显优于其他基线方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验