Suppr超能文献

基于启发式算法和无监督机器学习算法的步态事件先验知识的特征识别。

Feature Identification With a Heuristic Algorithm and an Unsupervised Machine Learning Algorithm for Prior Knowledge of Gait Events.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2022;30:108-114. doi: 10.1109/TNSRE.2021.3131953. Epub 2022 Jan 28.

Abstract

The purpose of this study was to compare a heuristic feature identification algorithm with output from the Beta Process Auto Regressive Hidden Markov Model (BP-AR-HMM) utilizing minimally sampled (≤ 100 Hz) human locomotion data for identification of gait events prior to their occurrence. Data were collected from 16 participants (21-64 years) using a single gyroscopic sensor in an inertial measurement unit on the dorsum of the foot, across multiple locomotion modes, including level ground walking and running (across speeds 0.8 m s - 3.0 m s), ramps and stairs. Identification of gait events, initial contact (IC) and toe off (TO) with the heuristic algorithm, was 94% across locomotion modes. The features identified prior to initial contact had a lead time of 186.32 ± 86.70 ms, while TO had a lead time of 63.96 ± 46.30 ms. The BP-AR-HMM identified features that indicated an impending IC and TO with 99% accuracy, with a lead time of 59.41 ± 54.41 ms for IC and 90.79 ± 35.51 ms for TO. These approaches are consistent in their identification of gait events and have the potential to be utilized for classification and prediction of locomotion mode.

摘要

本研究的目的是比较启发式特征识别算法与 Beta 过程自回归隐马尔可夫模型 (BP-AR-HMM) 的输出,利用最小采样(≤100Hz)的人体运动数据,在事件发生前识别步态事件。使用安装在脚部背部的单个惯性测量单元中的单个陀螺仪传感器,从 16 名参与者(21-64 岁)处收集数据,涵盖多种运动模式,包括平地行走和跑步(速度 0.8m/s-3.0m/s)、斜坡和楼梯。启发式算法识别步态事件(初始接触 (IC) 和脚趾离地 (TO))的准确率为 94%。在初始接触之前识别出的特征具有 186.32±86.70ms 的提前期,而 TO 具有 63.96±46.30ms 的提前期。BP-AR-HMM 以 99%的准确率识别出指示即将发生的 IC 和 TO 的特征,IC 的提前期为 59.41±54.41ms,TO 的提前期为 90.79±35.51ms。这些方法在识别步态事件方面是一致的,并且有可能用于运动模式的分类和预测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验