Suppr超能文献

自监督增强深度自动编码器在无监督视觉异常检测中的应用。

Self-Supervision-Augmented Deep Autoencoder for Unsupervised Visual Anomaly Detection.

出版信息

IEEE Trans Cybern. 2022 Dec;52(12):13834-13847. doi: 10.1109/TCYB.2021.3127716. Epub 2022 Nov 18.

Abstract

Deep autoencoder (AE) has demonstrated promising performances in visual anomaly detection (VAD). Learning normal patterns on normal data, deep AE is expected to yield larger reconstruction errors for anomalous samples, which is utilized as the criterion for detecting anomalies. However, this hypothesis cannot be always tenable since the deep AE usually captures the low-level shared features between normal and abnormal data, which leads to similar reconstruction errors for them. To tackle this problem, we propose a self-supervised representation-augmented deep AE for unsupervised VAD, which can enlarge the gap of anomaly scores between normal and abnormal samples by introducing autoencoding transformation (AT). Essentially, AT is introduced to facilitate AE to learn the high-level visual semantic features of normal images by introducing a self-supervision task (transformation reconstruction). In particular, our model inputs the original and transformed images into the encoder for obtaining latent representations; afterward, they are fed to the decoder for reconstructing both the original image and applied transformation. In this way, our model can utilize both image and transformation reconstruction errors to detect anomaly. Extensive experiments indicate that the proposed method outperforms other state-of-the-art methods, which demonstrates the validity and advancement of our model.

摘要

深度自动编码器 (AE) 在视觉异常检测 (VAD) 中表现出了很有前景的性能。通过在正常数据上学习正常模式,深度 AE 有望为异常样本产生更大的重建误差,这被用作检测异常的标准。然而,由于深度 AE 通常会捕获正常和异常数据之间的低级共享特征,这会导致它们的重建误差相似,因此这个假设并不总是成立。为了解决这个问题,我们提出了一种自监督表示增强的深度 AE 用于无监督 VAD,它可以通过引入自动编码变换 (AT) 来扩大正常和异常样本之间的异常分数差距。本质上,AT 被引入到 AE 中,以通过引入自监督任务 (变换重建) 来帮助 AE 学习正常图像的高层视觉语义特征。具体来说,我们的模型将原始图像和变换后的图像输入到编码器中以获得潜在表示;然后,它们被输入到解码器中,以重建原始图像和应用的变换。通过这种方式,我们的模型可以利用图像和变换重建误差来检测异常。大量实验表明,所提出的方法优于其他最先进的方法,这证明了我们模型的有效性和先进性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验