Suppr超能文献

一种用于无监督聚类的无解码器变分深度嵌入

A Decoder-Free Variational Deep Embedding for Unsupervised Clustering.

作者信息

Ji Qiang, Sun Yanfeng, Gao Junbin, Hu Yongli, Yin Baocai

出版信息

IEEE Trans Neural Netw Learn Syst. 2022 Oct;33(10):5681-5693. doi: 10.1109/TNNLS.2021.3071275. Epub 2022 Oct 5.

Abstract

In deep clustering frameworks, autoencoder (AE)- or variational AE-based clustering approaches are the most popular and competitive ones that encourage the model to obtain suitable representations and avoid the tendency for degenerate solutions simultaneously. However, for the clustering task, the decoder for reconstructing the original input is usually useless when the model is finished training. The encoder-decoder architecture limits the depth of the encoder so that the learning capacity is reduced severely. In this article, we propose a decoder-free variational deep embedding for unsupervised clustering (DFVC). It is well known that minimizing reconstruction error amounts to maximizing a lower bound on the mutual information (MI) between the input and its representation. That provides a theoretical guarantee for us to discard the bloated decoder. Inspired by contrastive self-supervised learning, we can directly calculate or estimate the MI of the continuous variables. Specifically, we investigate unsupervised representation learning by simultaneously considering the MI estimation of continuous representations and the MI computation of categorical representations. By introducing the data augmentation technique, we incorporate the original input, the augmented input, and their high-level representations into the MI estimation framework to learn more discriminative representations. Instead of matching to a simple standard normal distribution adversarially, we use end-to-end learning to constrain the latent space to be cluster-friendly by applying the Gaussian mixture distribution as the prior. Extensive experiments on challenging data sets show that our model achieves higher performance over a wide range of state-of-the-art clustering approaches.

摘要

在深度聚类框架中,基于自动编码器(AE)或变分自动编码器的聚类方法是最流行且最具竞争力的方法,它们鼓励模型获得合适的表示并同时避免退化解的趋势。然而,对于聚类任务,在模型训练完成后,用于重构原始输入的解码器通常是无用的。编码器 - 解码器架构限制了编码器的深度,从而严重降低了学习能力。在本文中,我们提出了一种用于无监督聚类的无解码器变分深度嵌入(DFVC)。众所周知,最小化重构误差等同于最大化输入与其表示之间互信息(MI)的下界。这为我们舍弃臃肿的解码器提供了理论保证。受对比自监督学习的启发,我们可以直接计算或估计连续变量的互信息。具体而言,我们通过同时考虑连续表示的互信息估计和类别表示的互信息计算来研究无监督表示学习。通过引入数据增强技术,我们将原始输入、增强输入及其高级表示纳入互信息估计框架,以学习更具判别力的表示。我们不是通过对抗方式匹配到简单的标准正态分布,而是使用端到端学习,通过应用高斯混合分布作为先验来约束潜在空间对聚类友好。在具有挑战性的数据集上进行的大量实验表明,我们的模型在广泛的现有最先进聚类方法中实现了更高的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验