Kumar Sanjeev
Opt Lett. 2021 Dec 1;46(23):5942-5945. doi: 10.1364/OL.433625.
Phase can be reliably estimated from a single diffracted intensity image if faithful prior information about the object is available. Examples include amplitude bounds, object support, sparsity in the spatial or transform domain, deep image prior, and the prior learned from labeled datasets by a deep neural network. Deep learning facilitates state-of-the-art reconstruction quality but requires a large labeled dataset (ground truth measurement pair acquired in the same experimental conditions) for training. To alleviate this data requirement problem, this Letter proposes a zero-shot learning method. The Letter demonstrates that the object prior learned by a deep neural network while being trained for a denoising task can also be utilized for phase retrieval if the diffraction physics is effectively enforced on the network output. The Letter additionally demonstrates that the incorporation of total variation in the proposed zero-shot framework facilitates reconstruction of similar quality in less time (e.g., ∼9 fold, for a test reported in this Letter).
如果能够获得关于物体的可靠先验信息,那么就可以从单个衍射强度图像中可靠地估计相位。示例包括幅度边界、物体支撑、空间或变换域中的稀疏性、深度图像先验以及通过深度神经网络从标记数据集中学习到的先验。深度学习有助于实现最先进的重建质量,但需要大量标记数据集(在相同实验条件下获取的真实测量对)进行训练。为了缓解这一数据需求问题,本文提出了一种零样本学习方法。本文证明,如果在网络输出上有效施加衍射物理原理,那么深度神经网络在训练去噪任务时学习到的物体先验也可用于相位检索。本文还证明,在所提出的零样本框架中纳入总变分有助于在更短时间内重建出质量相当的结果(例如,对于本文报告的一项测试,快约9倍)。