Opt Express. 2022 Sep 26;30(20):35647-35662. doi: 10.1364/OE.472083.
Coherent modulation imaging (CMI) is a lessness diffraction imaging technique, which uses an iterative algorithm to reconstruct a complex field from a single intensity diffraction pattern. Deep learning as a powerful optimization method can be used to solve highly ill-conditioned problems, including complex field phase retrieval. In this study, a physics-driven neural network for CMI is developed, termed CMINet, to reconstruct the complex-valued object from a single diffraction pattern. The developed approach optimizes the network's weights by a customized physical-model-based loss function, instead of using any ground truth of the reconstructed object for training beforehand. Simulation experiment results show that the developed CMINet has a high reconstruction quality with less noise and robustness to physical parameters. Besides, a trained CMINet can be used to reconstruct a dynamic process with a fast speed instead of iterations frame-by-frame. The biological experiment results show that CMINet can reconstruct high-quality amplitude and phase images with more sharp details, which is practical for biological imaging applications.
相干调制成像(CMI)是一种无衍射成像技术,它使用迭代算法从单个强度衍射图案重建复场。深度学习作为一种强大的优化方法,可用于解决高度病态问题,包括复杂场相位恢复。在这项研究中,开发了一种用于 CMI 的基于物理的神经网络,称为 CMINet,用于从单个衍射图案重建复值物体。所开发的方法通过定制的基于物理模型的损失函数来优化网络的权重,而不是在训练前使用任何重建物体的真实值。模拟实验结果表明,所开发的 CMINet 具有较高的重建质量,噪声较小,对物理参数具有较强的鲁棒性。此外,训练后的 CMINet 可用于快速重建动态过程,而无需逐帧迭代。生物实验结果表明,CMINet 可以重建具有更多清晰细节的高质量幅度和相位图像,这对于生物成像应用是实用的。