Departments of Pathology & Laboratory Medicine, Neurology, and Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA; Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medical Biotechnology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14 Str., 61-704 Poznan, Poland.
Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA.
Cell Rep. 2021 Nov 30;37(9):110062. doi: 10.1016/j.celrep.2021.110062.
A common mechanism in inherited ataxia is a vulnerability of DNA damage. Spinocerebellar ataxia type 7 (SCA7) is a CAG-polyglutamine-repeat disorder characterized by cerebellar and retinal degeneration. Polyglutamine-expanded ataxin-7 protein incorporates into STAGA co-activator complex and interferes with transcription by altering histone acetylation. We performed chromatic immunoprecipitation sequencing ChIP-seq on cerebellum from SCA7 mice and observed increased H3K9-promoter acetylation in DNA repair genes, resulting in increased expression. After detecting increased DNA damage in SCA7 cells, mouse primary cerebellar neurons, and patient stem-cell-derived neurons, we documented reduced homology-directed repair (HDR) and single-strand annealing (SSA). To evaluate repair at endogenous DNA in native chromosome context, we modified linear amplification-mediated high-throughput genome-wide translocation sequencing and found that DNA translocations are less frequent in SCA7 models, consistent with decreased HDR and SSA. Altered DNA repair function in SCA7 may predispose the subject to excessive DNA damage, leading to neuron demise and highlights DNA repair as a therapy target.
遗传性共济失调的一个常见机制是 DNA 损伤的脆弱性。脊髓小脑性共济失调 7 型(SCA7)是一种 CAG-多聚谷氨酰胺重复紊乱,其特征是小脑和视网膜变性。多聚谷氨酰胺扩展的ataxin-7 蛋白整合到 STAGA 共激活复合物中,并通过改变组蛋白乙酰化来干扰转录。我们对 SCA7 小鼠的小脑进行了染色质免疫沉淀测序(ChIP-seq),并观察到 DNA 修复基因中 H3K9-启动子乙酰化增加,导致表达增加。在检测到 SCA7 细胞、小鼠原代小脑神经元和患者干细胞衍生神经元中的 DNA 损伤增加后,我们记录到同源定向修复(HDR)和单链退火(SSA)减少。为了评估内源性 DNA 在天然染色体背景下的修复情况,我们修改了线性扩增介导的高通量全基因组转位测序,发现 SCA7 模型中的 DNA 转位频率较低,与 HDR 和 SSA 减少一致。SCA7 中 DNA 修复功能的改变可能使受影响者易患过度的 DNA 损伤,导致神经元死亡,并强调 DNA 修复是一种治疗靶点。