Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China; University of Chinese Academy of Sciences, Beijing 100049, China.
Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China; School of Geography, Earth and Environmental Sciences, University of Plymouth, Plymouth, UK.
Sci Total Environ. 2022 Feb 1;806(Pt 2):150416. doi: 10.1016/j.scitotenv.2021.150416. Epub 2021 Sep 24.
Climate change has great impacts on forest ecosystems, especially with the increasing frequency of heatwaves. Thermal safety margin (TSM) calculated by the difference between body temperature and thermotolerance threshold is useful to predict thermal safety of organisms. It has been widely used for animals, whereas has rarely been reported for plants. Besides, most of the previous studies used only thermotolerance to estimate thermal safety or used thermotolerance and air temperature (Ta) to calculate TSM. However, leaf temperature (Tl) is the real "body" temperature of plant leaves. Tl decoupling from Ta might induce large error in TSM. Here, we investigated TSM of photosystem II (thermotolerance of PSII - the maximum Tl) of dominant canopy plants in four forests from tropical to temperate biomes during a heatwave, and compared the TSMs calculated by Tl (TSM.Tl) and Ta (TSM.Ta) respectively. Also, thermal related leaf traits were investigated. The results showed that both TSM. Tl and TSM.Ta decreased from the cool forests to the hot forests. TSM.Tl was highly correlated with the maximum leaf temperature (Tlmax), while had an opposite trend with thermotolerance across biomes. Thus, Tlmax instead of thermotolerance can be used to evaluate TSM. The maximum Ta (Tamax), Tlmax and leaf traits explained 68% of the variance of thermotolerance in a random forest model, where Tamax and Tlmax explained 62%. TSM.Ta could not distinguish thermal safety differences between co-occurring species. The overestimation of TSM by TSM.Ta increased from the tropical to the temperate forest, and increased with Tl within biome. Therefore, it is not recommended to use TSM.Ta in cold forests. The present study enriches the dataset of photosynthetic TSMs across biomes, proposes using Tlmax to estimate TSMs of leaves, and highlights the risk of hot dry forest during heatwaves.
气候变化对森林生态系统有重大影响,尤其是随着热浪发生频率的增加。体温与耐热阈值之差计算得出的热安全裕度(TSM)有助于预测生物的热安全性。它已被广泛应用于动物,但很少有报道用于植物。此外,大多数先前的研究仅使用耐热性来估计热安全性,或使用耐热性和空气温度(Ta)来计算 TSM。然而,叶温(Tl)是植物叶片的真实“体温”。Tl 与 Ta 的解耦可能会导致 TSM 出现较大误差。在这里,我们在热浪期间调查了来自热带到温带生物群落的四个森林中优势林冠植物的光合系统 II 的 TSM(PSII 耐热性-最大 Tl),并分别比较了通过 Tl(TSM.Tl)和 Ta(TSM.Ta)计算的 TSM。此外,还研究了与热相关的叶片特性。结果表明,TSM.Tl 和 TSM.Ta 均从凉爽森林到炎热森林而降低。TSM.Tl 与最大叶温(Tlmax)高度相关,而与跨生物群落的耐热性呈相反趋势。因此,Tlmax 而不是耐热性可用于评估 TSM。最大 Ta(Tamax)、Tlmax 和叶片特性在随机森林模型中解释了耐热性变异的 68%,其中 Tamax 和 Tlmax 解释了 62%。TSM.Ta 无法区分共同出现的物种之间的热安全性差异。TSM.Ta 的高估程度从热带森林到温带森林逐渐增加,并在生物群落内随 Tl 增加而增加。因此,不建议在寒冷森林中使用 TSM.Ta。本研究丰富了跨生物群落光合作用 TSM 的数据集,提出使用 Tlmax 来估计叶片的 TSM,并强调了热浪期间干热森林的风险。