Middleby Kali B, Jordan Rebecca, Cheesman Alexander W, Rossetto Maurizio, Breed Martin F, Crayn Darren M, Cernusak Lucas A
College of Science and Engineering and Centre for Tropical Environmental and Sustainability Science, James Cook University, Cairns, Queensland, Australia.
AMAP, University of Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France.
Glob Chang Biol. 2025 Sep;31(9):e70461. doi: 10.1111/gcb.70461.
Tropical forests play a critical role in biodiversity, carbon sequestration, and climate regulation, but are increasingly affected by heatwaves and droughts. Vulnerability to warming may vary within and between species because of phenotypic divergence. Leaf trait variation can affect leaf operating temperatures-a phenomenon termed 'limited homeothermy' when it helps avoid heat damage in warmer conditions. However, evidence for this capacity and the relative roles of acclimation or adaptation remain limited. We measured photosynthetic heat tolerance and leaf thermal traits of three co-occurring rainforest tree species across a thermal gradient in the Australian Wet Tropics. Using a leaf energy balance model parameterised with field-measured traits, we predicted variation in leaf-to-air temperature differences (∆T) and resulting thermal safety margins. We combined this with individual-based genome-wide data to detect signals of adaptive divergence and validated findings in a glasshouse trial with provenances grown under contrasting temperature and humidity conditions. Intraspecific trait variation reduced ∆T and increased heat tolerance in warmer sites for Darlingia darlingiana and Elaeocarpus grandis, but not Cardwellia sublimis. As a result, thermal safety margins declined less steeply with increasing growth temperature in species capable of increased heat tolerance and avoidance, indicating these strategies can effectively buffer warming. All species showed genomic signals of selection, with associations to temperature and moisture variables. In E. grandis, glasshouse results confirmed a negative cline in ∆T with temperature of origin. Although contrasting growth temperature and humidity lead to acclimation of individual traits, their coordination maintained ∆T across the conditions imposed. Our findings provide evidence of limited homeothermy and suggest climate gradients have selected for trait combinations that reduce leaf temperatures at warmer sites in some but not all species. Given the rapid pace of climate change, those species with limited capacity to adjust their thermal safety margins through acclimation or adaptation may be at greater risk of local extinction.
热带森林在生物多样性、碳固存和气候调节方面发挥着关键作用,但越来越受到热浪和干旱的影响。由于表型差异,物种内部和物种之间对变暖的脆弱性可能有所不同。叶片性状变异会影响叶片的工作温度——在较温暖条件下有助于避免热损伤时,这种现象被称为“有限体温调节”。然而,这种能力的证据以及驯化或适应的相对作用仍然有限。我们在澳大利亚湿热带地区的一个热梯度上测量了三种共生雨林树种的光合耐热性和叶片热性状。使用根据实地测量性状参数化的叶片能量平衡模型,我们预测了叶气温差(∆T)的变化以及由此产生的热安全边际。我们将此与基于个体的全基因组数据相结合,以检测适应性分化的信号,并在温室试验中验证了这些发现,试验中使用了在不同温度和湿度条件下生长的种源。对于 Darlingia darlingiana 和 Elaeocarpus grandis 来说,种内性状变异在较温暖的地点降低了∆T 并提高了耐热性,但 Cardwellia sublimis 没有。结果,对于能够提高耐热性和避免热损伤的物种,热安全边际随生长温度升高的下降幅度较小,这表明这些策略可以有效缓冲变暖。所有物种都显示出选择的基因组信号,与温度和湿度变量相关。在 E. grandis 中,温室结果证实了∆T 随起源温度呈负梯度变化。尽管不同的生长温度和湿度会导致个体性状的驯化,但其协调性在施加的条件下维持了∆T。我们的研究结果提供了有限体温调节的证据,并表明气候梯度选择了一些(但不是所有)物种在较温暖地点降低叶片温度的性状组合。鉴于气候变化的快速步伐,那些通过驯化或适应来调整其热安全边际能力有限的物种可能面临更大的局部灭绝风险。