School of Management, Fudan University, Shanghai, China.
Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
BMC Med Inform Decis Mak. 2021 Dec 1;21(1):338. doi: 10.1186/s12911-021-01701-9.
Neonatal jaundice may cause severe neurological damage if poorly evaluated and diagnosed when high bilirubin occurs. The study explored how to effectively integrate high-dimensional genetic features into predicting neonatal jaundice.
This study recruited 984 neonates from the Suzhou Municipal Central Hospital in China, and applied an ensemble learning approach to enhance the prediction of high-dimensional genetic features and clinical risk factors (CRF) for physiological neonatal jaundice of full-term newborns within 1-week after birth. Further, sigmoid recalibration was applied for validating the reliability of our methods.
The maximum accuracy of prediction reached 79.5% Area Under Curve (AUC) by CRF and could be marginally improved by 3.5% by including genetic variant (GV). Feature importance illustrated that 36 GVs contributed 55.5% in predicting neonatal jaundice in terms of gain from splits. Further analysis revealed that the main contribution of GV was to reduce the false-positive rate, i.e., to increase the specificity in the prediction.
Our study shed light on the theoretical and practical value of GV in the prediction of neonatal jaundice.
新生儿黄疸如果在高胆红素血症发生时评估和诊断不当,可能会导致严重的神经损伤。本研究探讨了如何有效地将高维遗传特征整合到预测新生儿黄疸中。
本研究在中国苏州市立医院中心招募了 984 名新生儿,并应用集成学习方法来增强对高维遗传特征和临床风险因素(CRF)的预测,以预测出生后 1 周内足月新生儿的生理性新生儿黄疸。此外,应用 sigmoid 重新校准来验证我们方法的可靠性。
仅通过 CRF 预测的最大准确度达到了 79.5%的曲线下面积(AUC),通过纳入遗传变异(GV)可以提高 3.5%。特征重要性表明,36 个 GV 在预测新生儿黄疸方面的贡献为 55.5%,这是通过分裂获得的。进一步分析表明,GV 的主要贡献是降低假阳性率,即增加预测的特异性。
本研究阐明了 GV 在预测新生儿黄疸中的理论和实际价值。