King's Forensics, Department of Analytical, Environmental and Forensic Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom.
King's Forensics, Department of Analytical, Environmental and Forensic Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom.
Forensic Sci Int Genet. 2022 Mar;57:102637. doi: 10.1016/j.fsigen.2021.102637. Epub 2021 Nov 24.
The estimation of chronological age from biological fluids has been an important quest for forensic scientists worldwide, with recent approaches exploiting the variability of DNA methylation patterns with age in order to develop the next generation of forensic 'DNA intelligence' tools for this application. Drawing from the conclusions of previous work utilising massively parallel sequencing (MPS) for this analysis, this work introduces a DNA methylation-based age estimation method for blood that exhibits the best combination of prediction accuracy and sensitivity reported to date. Statistical evaluation of markers from 51 studies using microarray data from over 4000 individuals, followed by validation using in-house generated MPS data, revealed a final set of 11 markers with the greatest potential for accurate age estimation from minimal DNA material. Utilising an algorithm based on support vector machines, the proposed model achieved an average error (MAE) of 3.3 years, with this level of accuracy retained down to 5 ng of starting DNA input (~ 1 ng PCR input). The accuracy of the model was retained (MAE = 3.8 years) in a separate test set of 88 samples of Spanish origin, while predictions for donors of greater forensic interest (< 55 years of age) displayed even higher accuracy (MAE = 2.6 years). Finally, no sex-related bias was observed for this model, while there were also no signs of variation observed between control and disease-associated populations for schizophrenia, rheumatoid arthritis, frontal temporal dementia and progressive supranuclear palsy in microarray data relating to the 11 markers.
从生物体液中推断年龄一直是全世界法医学家的重要目标,最近的方法利用了 DNA 甲基化模式随年龄的变化,以开发下一代法医“DNA 智能”工具来应用于该领域。本研究基于之前利用大规模平行测序(MPS)进行该分析的结论,提出了一种基于血液 DNA 甲基化的年龄估计方法,该方法表现出迄今为止报告的最佳预测准确性和灵敏度的组合。对来自 51 项研究的标记物进行统计学评估,这些研究使用了来自 4000 多人的微阵列数据,然后使用内部生成的 MPS 数据进行验证,揭示了一组最终具有最大潜力的 11 个标记物,可从最小量的 DNA 材料中进行准确的年龄估计。利用基于支持向量机的算法,所提出的模型实现了平均误差(MAE)为 3.3 年,并且在 5ng 起始 DNA 输入量(~1ng PCR 输入量)下保留了这种准确度。在来自西班牙的 88 个样本的独立测试集中,该模型的准确性得以保留(MAE=3.8 年),而对于更具法医学意义的供体(<55 岁)的预测则显示出更高的准确性(MAE=2.6 年)。最后,该模型没有观察到与性别相关的偏差,并且在与 11 个标记物相关的微阵列数据中,精神分裂症、类风湿性关节炎、额颞叶痴呆和进行性核上性麻痹的对照和疾病相关人群之间也没有观察到变异迹象。