Davydova Ekaterina, Perenkov Alexey, Vedunova Maria
Institute of Biology and Biomedicine, Lobachevsky State University, 23 Gagarin Ave., Nizhny Novgorod 603022, Russia.
Genes (Basel). 2024 Mar 28;15(4):425. doi: 10.3390/genes15040425.
Epigenetic clocks are valuable tools for estimating both chronological and biological age by assessing DNA methylation levels at specific CpG dinucleotides. While conventional epigenetic clocks rely on genome-wide methylation data, targeted approaches offer a more efficient alternative. In this study, we explored the feasibility of constructing a minimized epigenetic clock utilizing data acquired through the iPlex MassARRAY technology. The study enrolled a cohort of relatively healthy individuals, and their methylation levels of eight specific CpG dinucleotides in genes , , , , , and were evaluated using the iPlex MassARRAY system and the Illumina EPIC array. The methylation level of five studied CpG sites demonstrated significant correlations with chronological age and an acceptable convergence of data obtained by the iPlex MassARRAY and Illumina EPIC array. At the same time, the methylation level of three CpG sites showed a weak relationship with age and exhibited a low concordance between the data obtained from the two technologies. The construction of the epigenetic clock involved the utilization of different machine-learning models, including linear models, deep neural networks (DNN), and gradient-boosted decision trees (GBDT). The results obtained from these models were compared with each other and with the outcomes generated by other well-established epigenetic clocks. In our study, the TabNet architecture (deep tabular data learning architecture) exhibited the best performance (best MAE = 5.99). Although our minimized epigenetic clock yielded slightly higher age prediction errors compared to other epigenetic clocks, it still represents a viable alternative to the genome-wide epigenotyping array.
表观遗传时钟是通过评估特定CpG二核苷酸处的DNA甲基化水平来估计实际年龄和生物学年龄的宝贵工具。传统的表观遗传时钟依赖于全基因组甲基化数据,而靶向方法提供了一种更有效的替代方案。在本研究中,我们探索了利用通过iPlex MassARRAY技术获取的数据构建最小化表观遗传时钟的可行性。该研究招募了一组相对健康的个体,并使用iPlex MassARRAY系统和Illumina EPIC阵列评估了他们在基因 、 、 、 、 和 中八个特定CpG二核苷酸的甲基化水平。五个研究的CpG位点的甲基化水平与实际年龄显示出显著相关性,并且通过iPlex MassARRAY和Illumina EPIC阵列获得的数据具有可接受的一致性。同时,三个CpG位点的甲基化水平与年龄的关系较弱,并且两种技术获得的数据之间的一致性较低。表观遗传时钟的构建涉及使用不同的机器学习模型,包括线性模型、深度神经网络(DNN)和梯度提升决策树(GBDT)。将这些模型得到的结果相互比较,并与其他成熟的表观遗传时钟产生的结果进行比较。在我们的研究中,TabNet架构(深度表格数据学习架构)表现出最佳性能(最佳平均绝对误差 = 5.99)。尽管我们的最小化表观遗传时钟与其他表观遗传时钟相比产生的年龄预测误差略高,但它仍然是全基因组表观基因分型阵列的可行替代方案。