Deng Zhe, Teng Yong-Jie, Zhou Qing, Ouyang Zhao-Guang, Hu Yu-Xing, Long Hong-Ping, Hu Mei-Jie, Mei Si, Lin Feng-Xia, Dai Xin-Jun, Zhang Bo-Yu, Feng Ting, Tian Xue-Fei
College of Integrated Chinese and Western Medicine, Hunan Key Laboratory of Translational Research in Formulas and Zheng of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China.
The First Hospital of Hunan University of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China.
World J Gastrointest Oncol. 2021 Nov 15;13(11):1725-1740. doi: 10.4251/wjgo.v13.i11.1725.
Hepatocellular carcinoma (HCC) is characterized by dysregulation of the immune microenvironment and the development of chemoresistance. Specifically, expression of the programmed cell death protein 1 (PD-1)/programmed cell death 1 ligand 1 (PD-L1) axis, an immune checkpoint, may lead to tumour immune escape, resulting in disease progression. The latest research shows that tumour immune escape may be caused by the upregulation of PD-L1 mediated by hypoxia-inducible factor-1 alpha (HIF-1α), and simultaneous inhibition of HIF-1α and PD-L1 has the potential to enhance the host's antitumour immunity. Moreover, inhibition of the PD-1/PD-L1 axis may mitigate tumour chemoresistance. Shuyu pills (SYPs) contain immunity-enhancing and antitumour components, making them a potential HCC treatment.
To investigate the efficacy of SYPs for HCC treatment simultaneous HIF-1α and PD-L1 inhibition and the mechanism involved.
A subcutaneous xenograft tumour model was first established in BALB/c nude mice by the subcutaneous injection of 1 × 10 SMMC-7721 cells. Male mice (male, 5 weeks old; = 24) were then randomly divided into the following four groups ( = 6): Control (0.9% normal saline), SYP (200 mg/kg), SYP + cisplatin (DDP) (200 mg/kg + 5 mg/kg DDP weekly intraperitoneal injection), and DDP (5 mg/kg cisplatin weekly intraperitoneal injection). The dose of saline or SYPs for the indicated mouse groups was 0.2 mL/d intragastric administration. The tumour volumes and body weights of the mice were measured every 2 d. The mice were euthanized by cervical dislocation after 14 d of continuous treatment, and the xenograft tissues were excised and weighed. Western blot assays were used to measure the protein expression of HIF-1α, PD-1, PD-L1, CD4+ T cells, and CD8+ T cells in HCC tumours from mice. Quantitative reverse transcription polymerase chain reaction was used for real-time quantitative detection of PD-1, PD-L1, and HIF-1α mRNA expression. An immunofluorescence assay was conducted to examine the expression of CD4+ T cells and CD8+ T cells.
Compared to mice in the control group, those in the SYP and SYP + DDP groups exhibited reduced tumour volumes and tumour weights. Moreover, the protein and mRNA expression levels of the oncogene HIF-1α and that of the negative immunomodulatory factors PD-1 and PD-L1 were decreased in both the SYP and SYP + DDP groups, with the decrease effects being more prominent in the SYP + DDP group than in the SYP group (HIF-1α protein: Control SYP, = 0.0129; control SYP + DDP, = 0.0004; control DDP, = 0.0152, SYP + DDP DDP, = 0.0448; HIF-1α mRNA: control SYP, = 0.0009; control SYP + DDP, < 0.0001; control DDP, = 0.0003, SYP SYP + DDP, = 0.0192. PD-1 protein: Control SYP, = 0.0099; control SYP + DDP, < 0.0001, SPY SYP + DDP, = 0.0009; SYP + DDP DDP, < 0.0001; PD-1 mRNA: control SYP, = 0.0002; control SYP + DDP, < 0.0001; control DDP, = 0.0003, SPY SYP + DDP, = 0.0003; SYP + DDP DDP, = 0.0002. PD-L1 protein: control SYP, < 0.0001; control SYP + DDP, < 0.0001; control DDP, < 0.0001, SPY SYP + DDP, = 0.0040; SYP + DDP DDP, = 0.0010; PD-L1 mRNA: Control SYP, < 0.0001; control SYP + DDP, < 0.0001; control DDP, < 0.0001, SPY SYP + DDP, < 0.0001; SYP + DDP DDP, = 0.0014). Additionally, the quantitative and protein expression levels of CD4+ T cells and CD8+ T cells were simultaneously upregulated in the SYP + DDP group, whereas only the expression of CD4+ T cells was upregulated in the SYP group. (CD4+ T cell quantitative: Control SYP + DDP, < 0.0001, SYP SYP + DDP, = 0.0005; SYP + DDP DDP, = 0.0002. CD4+ T cell protein: Control SYP, = 0.0033; Control SYP + DDP, < 0.0001; Control DDP, = 0.0021, SYP SYP + DDP, = 0.0004; SYP + DDP DDP, = 0.0006. Quantitative CD8+ T cells: Control SYP + DDP, = 0.0013; SYP SYP + DDP, = 0.0347; SYP + DDP DDP, = 0.0043. CD8+ T cell protein: Control SYP + DDP, < 0.0001; SYP SYP + DDP, < 0.0001; SYP + DDP DDP, < 0.0001). Finally, expression of HIF-1α was positively correlated with that of PD-1/PD-L1 and negatively correlated with the expression of CD4+ T cells and CD8+ T cells.
SYPs inhibit immune escape and enhance chemosensitization in HCC simultaneous inhibition of HIF-1α and PD-L1, thus inhibiting the growth of subcutaneous xenograft HCC tumours.
肝细胞癌(HCC)的特征在于免疫微环境失调和化疗耐药性的发展。具体而言,程序性细胞死亡蛋白1(PD-1)/程序性细胞死亡蛋白1配体1(PD-L1)轴(一种免疫检查点)的表达可能导致肿瘤免疫逃逸,从而导致疾病进展。最新研究表明,肿瘤免疫逃逸可能是由缺氧诱导因子-1α(HIF-1α)介导的PD-L1上调引起的,同时抑制HIF-1α和PD-L1有可能增强宿主的抗肿瘤免疫力。此外,抑制PD-1/PD-L1轴可能减轻肿瘤化疗耐药性。舒郁丸(SYPs)含有增强免疫力和抗肿瘤的成分,使其成为潜在的HCC治疗药物。
研究舒郁丸对HCC的治疗效果、同时抑制HIF-1α和PD-L1的作用及其相关机制。
首先通过皮下注射1×10⁶ SMMC-7721细胞在BALB/c裸鼠中建立皮下异种移植肿瘤模型。然后将雄性小鼠(雄性,5周龄;n = 24)随机分为以下四组(n = 6):对照组(0.9%生理盐水)、舒郁丸组(200 mg/kg)、舒郁丸+顺铂(DDP)组(200 mg/kg + 5 mg/kg DDP,每周腹腔注射)和DDP组(5 mg/kg顺铂,每周腹腔注射)。指定小鼠组的生理盐水或舒郁丸剂量为0.2 mL/d,灌胃给药。每2天测量小鼠的肿瘤体积和体重。连续治疗14天后,通过颈椎脱臼法对小鼠实施安乐死,切除异种移植组织并称重。采用蛋白质免疫印迹法检测小鼠HCC肿瘤中HIF-1α、PD-1、PD-L1、CD4⁺ T细胞和CD8⁺ T细胞的蛋白表达。采用定量逆转录聚合酶链反应对PD-1、PD-L1和HIF-1α mRNA表达进行实时定量检测。进行免疫荧光分析以检测CD4⁺ T细胞和CD8⁺ T细胞的表达。
与对照组小鼠相比,舒郁丸组和舒郁丸+DDP组小鼠的肿瘤体积和肿瘤重量均减小。此外,舒郁丸组和舒郁丸+DDP组中癌基因HIF-1α以及负性免疫调节因子PD-1和PD-L1的蛋白和mRNA表达水平均降低,舒郁丸+DDP组的降低效果比舒郁丸组更显著(HIF-1α蛋白:对照组vs舒郁丸组,P = 0.0129;对照组vs舒郁丸+DDP组,P = 0.0004;对照组vs DDP组,P = 0.0152,舒郁丸+DDP组vs DDP组,P = 0.0448;HIF-1α mRNA:对照组vs舒郁丸组,P = 0.0009;对照组vs舒郁丸+DDP组,P < 0.0001;对照组vs DDP组,P = 0.0003,舒郁丸组vs舒郁丸+DDP组,P = 0.0192。PD-1蛋白:对照组vs舒郁丸组,P = 0.0099;对照组vs舒郁丸+DDP组,P < 0.0001,舒郁丸组vs舒郁丸+DDP组,P = 0.0009;舒郁丸+DDP组vs DDP组,P < 0.0001;PD-1 mRNA:对照组vs舒郁丸组,P = 0.0002;对照组vs舒郁丸+DDP组,P < 0.0001;对照组vs DDP组,P = 0.0003,舒郁丸组vs舒郁丸+DDP组,P = 0.0003;舒郁丸+DDP组vs DDP组,P = 0.0002。PD-L1蛋白:对照组vs舒郁丸组,P < 0.0001;对照组vs舒郁丸+DDP组,P < 0.0001;对照组vs DDP组,P < 0.0001,舒郁丸组vs舒郁丸+DDP组,P = 0.0040;舒郁丸+DDP组vs DDP组,P = 0.0010;PD-L1 mRNA:对照组vs舒郁丸组,P < 0.0001;对照组vs舒郁丸+DDP组,P < 0.0001;对照组vs DDP组,P < 0.0001,舒郁丸组vs舒郁丸+DDP组,P < 0.0001;舒郁丸+DDP组vs DDP组,P = 0.0014)。此外,舒郁丸+DDP组中CD4⁺ T细胞和CD8⁺ T细胞的定量和蛋白表达水平同时上调,而舒郁丸组中仅CD4⁺ T细胞的表达上调。(CD4⁺ T细胞定量:对照组vs舒郁丸+DDP组,P < 0.0001,舒郁丸组vs舒郁丸+DDP组,P = 0.0005;舒郁丸+DDP组vs DDP组,P = 0.0002。CD4⁺ T细胞蛋白:对照组vs舒郁丸组,P = 0.0033;对照组vs舒郁丸+DDP组,P < 0.0001;对照组vs DDP组,P = 0.0021,舒郁丸组vs舒郁丸+DDP组,P = 0.0004;舒郁丸+DDP组vs DDP组,P = 0.0006。CD8⁺ T细胞定量:对照组vs舒郁丸+DDP组,P = 0.0013;舒郁丸组vs舒郁丸+DDP组,P = 0.0347;舒郁丸+DDP组vs DDP组,P = 0.0043。CD8⁺ T细胞蛋白:对照组vs舒郁丸+DDP组,P < 0.0001;舒郁丸组vs舒郁丸+DDP组,P < 0.0001;舒郁丸+DDP组vs DDP组,P < 0.0001)。最后,HIF-1α的表达与PD-1/PD-L1的表达呈正相关,与CD4⁺ T细胞和CD8⁺ T细胞的表达呈负相关。
舒郁丸通过同时抑制HIF-1α和PD-L1抑制HCC的免疫逃逸并增强化疗敏感性,从而抑制皮下异种移植HCC肿瘤的生长。