Suppr超能文献

键合在石墨烯上的SnS-SnS pn异质结,具有增强的电荷转移用于锂存储。

SnS-SnS pn hetero-junction bonded on graphene with boosted charge transfer for lithium storage.

作者信息

Wang Jie, Zhang Zijia, Zhao Hailei

机构信息

School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China.

Beijing Municipal Key Laboratory of New Energy Materials and Technologies, Beijing 100083, China.

出版信息

Nanoscale. 2021 Dec 16;13(48):20481-20487. doi: 10.1039/d1nr05438d.

Abstract

Despite the advantage of high capacity, practical implementation of the tin disulfide (SnS) anode for lithium-ion batteries is still plagued by the inferior rate performance due to its low intrinsic electronic conductivity and mediocre ion transport in the bulk. Herein, to address these issues, a peculiar heterojunction of SnS-SnS quantum dots (QDs) closely coupled with reduced graphene oxide (rGO) sheets was developed. Because of the typical n-type and p-type semiconductor characteristics of SnS and SnS, respectively, the formed pn junction at the SnS/SnS interface will induce a built-in electric field, which can significantly accelerate lithium-ion transport through the SnS/SnS interface. The ultrafine SnS and SnS nano-domains with superlong pn junction interfacial length construct an accelerated lithium-ion diffusion network, while the conductive rGO nanosheets provide a high-speed electron conduction pathway. Meanwhile, the flexible rGO chemically coupled with SnS/SnS buffers the volumetric variation during repeated lithiation/delithiation processes and guarantees robust structural durability. These merits afford the designed SnS-SnS/rGO electrode with fast electrode reaction kinetics and good structural durability upon cycling. Consequently, the delicate SnS-SnS/rGO electrode harvests a superlative rate capability of 926 and 865 mA h g at 5 and 10 A g, respectively, and excellent long-term cycling stability with a high reversible capacity of 1075 mA h g at 1 A g up to 1000 cycles with negligible degradation.

摘要

尽管二硫化锡(SnS)负极应用于锂离子电池具有高容量优势,但由于其本征电子电导率低以及体相中离子传输性能一般,其实际应用中的倍率性能仍然较差。在此,为了解决这些问题,我们制备了一种特殊的SnS - SnS量子点(QDs)与还原氧化石墨烯(rGO)片紧密耦合的异质结。由于SnS和SnS分别具有典型的n型和p型半导体特性,在SnS/SnS界面形成的pn结会诱导产生内建电场,这可以显著加速锂离子通过SnS/SnS界面的传输。具有超长pn结界面长度的超细SnS和SnS纳米域构建了一个加速锂离子扩散网络,而导电的rGO纳米片提供了高速电子传导途径。同时,与SnS/SnS化学耦合的柔性rGO缓冲了反复锂化/脱锂过程中的体积变化,并保证了结构的稳健耐久性。这些优点赋予了设计的SnS - SnS/rGO电极快速的电极反应动力学和循环时良好的结构耐久性。因此,这种精细的SnS - SnS/rGO电极在5和10 A g时分别具有926和865 mA h g的优异倍率性能,以及在1 A g下高达1000次循环时具有1075 mA h g的高可逆容量和可忽略不计的降解的优异长期循环稳定性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验