Suppr超能文献

片状堆叠的SnS/rGO异质结构作为锂离子电池的超稳定阳极

Sheet-Like Stacking SnS/rGO Heterostructures as Ultrastable Anodes for Lithium-Ion Batteries.

作者信息

Liu Jiande, Chang Yingfan, Sun Kai, Guo Pengqian, Cao Dianliang, Ma Yaodong, Liu Dequan, Liu Qiming, Fu Yujun, Liu Jie, He Deyan

机构信息

School of Materials and Energy, and LONGi Institute of Future Technology, Lanzhou University, Lanzhou 730000, China.

Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China.

出版信息

ACS Appl Mater Interfaces. 2022 Mar 9;14(9):11739-11749. doi: 10.1021/acsami.1c18268. Epub 2022 Feb 24.

Abstract

SnS-based materials have attracted considerable attention in energy storage and conversion owing to their high lithium activity and theoretical capacity. However, the practical application is severely limited by the low coulombic efficiency and short cycle life due to irreversible side reactions, low conductivity, and serious pulverization in the discharge/charge process. In this study, sheet-like stacking SnS/reduced graphene oxide (rGO) heterostructures were developed using a facile solvothermal method. It was found that the composites between SnS nanoplates and rGO nanosheets are closely coupled through van der Waals interactions, providing efficient electron/ion paths to ensure high electrical conductivity and sufficient buffer space to alleviate volume expansion. Therefore, the SnS/rGO heterostructure anode can obtain a high capacity of 840 mA h g after 120 cycles at a current density of 200 mA g and maintain a capacity of 450 mA h g after 1000 cycles at 1000 mA g. In situ X-ray diffraction tests showed that SnS/rGO undergoes typical initial intercalation, conversion, and subsequent alloying reactions during the first discharge, and most of the reactions are dealloying/alloying in the subsequent cycles. The galvanostatic intermittent titration technique showed that the diffusion of lithium ions in the SnS/rGO heterostructures is faster in the intercalation and conversion reactions than in the alloying reactions. These observations help to clarify the reaction mechanism and ion diffusion behavior in the SnS anode materials, thus providing valuable insights for improving the energy efficiency of lithium-ion batteries.

摘要

基于硫化亚锡(SnS)的材料因其高锂活性和理论容量,在能量存储与转换领域引起了广泛关注。然而,由于不可逆的副反应、低导电性以及充放电过程中的严重粉化,其实际应用受到库仑效率低和循环寿命短的严重限制。在本研究中,采用简便的溶剂热法制备了片状堆叠的SnS/还原氧化石墨烯(rGO)异质结构。研究发现,SnS纳米片与rGO纳米片之间的复合材料通过范德华相互作用紧密耦合,提供了高效的电子/离子传输路径,以确保高电导率和足够的缓冲空间来缓解体积膨胀。因此,SnS/rGO异质结构阳极在200 mA g的电流密度下循环120次后可获得840 mA h g的高容量,在1000 mA g的电流密度下循环1000次后仍保持450 mA h g的容量。原位X射线衍射测试表明,SnS/rGO在首次放电过程中经历了典型的初始嵌入、转化以及随后的合金化反应,而在随后的循环中大部分反应为去合金化/合金化反应。恒电流间歇滴定技术表明,锂离子在SnS/rGO异质结构中的扩散在嵌入和转化反应中比在合金化反应中更快。这些观察结果有助于阐明SnS负极材料中的反应机理和离子扩散行为,从而为提高锂离子电池的能量效率提供有价值的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验