College of Information Science and Engineering, Henan University of Technology, Zhengzhou, 450001, China.
Henan College of Transportation, Zhengzhou, 451460, China.
Environ Sci Pollut Res Int. 2022 Apr;29(18):26539-26548. doi: 10.1007/s11356-021-17696-9. Epub 2021 Dec 2.
Surface coal mining causes vegetation disturbance while providing an energy source. Thus, much attention is given to monitoring the vegetation of surface coal mining regions. Multitemporal satellite imagery, such as Landsat time-series imagery, is an operational environment monitoring service widely used to access vegetation traits and ensure vegetation surveillance across large areas. However, most of the previous studies have been conducted with change detection models or threshold-based methods that require multiple parameter settings or sample training. In this paper, we tried to analyze the change traits of vegetation in surface coal mining regions using shape-based clustering based on Normalized Difference Vegetation Index (NDVI) time series without multiple parameter settings and sample training. The shape-based clustering used in this paper applied shape-based distance (SBD) to obtain the distance between time series and used Dynamic Time Warping Barycenter Averaging (DBA) to generate cluster centroids. We applied the method to a stack of 19 NDVI images from 2000 to 2018 for a surface coal mining region located in North China. The results showed that the shape-based clustering used in this paper was appropriate for monitoring vegetation change in the region and achieved 79.0% overall accuracy in detecting disturbance-recovery trajectory types.
露天采煤在提供能源的同时也会导致植被受到干扰。因此,人们非常关注对露天采煤区植被的监测。多时相卫星图像(如 Landsat 时间序列图像)是一种广泛用于获取植被特征并确保大面积植被监测的业务环境监测服务。然而,以前的大多数研究都是基于变化检测模型或基于阈值的方法进行的,这些方法需要进行多次参数设置或样本训练。在本文中,我们尝试使用基于归一化植被指数 (NDVI) 时间序列的基于形状的聚类方法来分析露天采煤区植被的变化特征,而无需进行多次参数设置和样本训练。本文中使用的基于形状的聚类方法应用形状距离(SBD)来获取时间序列之间的距离,并使用动态时间规整重心平均(DBA)来生成聚类质心。我们将该方法应用于华北地区一个露天采煤区 2000 年至 2018 年的 19 幅 NDVI 图像堆栈。结果表明,本文中使用的基于形状的聚类方法适用于监测该地区的植被变化,在检测干扰-恢复轨迹类型方面的总体准确率达到 79.0%。