Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.
Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
Glia. 2022 Mar;70(3):536-557. doi: 10.1002/glia.24122. Epub 2021 Dec 2.
Ataxia-telangiectasia (A-T) is a multisystem autosomal recessive disease caused by mutations in the ATM gene and characterized by cerebellar atrophy, progressive ataxia, immunodeficiency, male and female sterility, radiosensitivity, cancer predisposition, growth retardation, insulin-resistant diabetes, and premature aging. ATM phosphorylates more than 1500 target proteins, which are involved in cell cycle control, DNA repair, apoptosis, modulation of chromatin structure, and other cytoplasmic as well as mitochondrial processes. In our quest to better understand the mechanisms by which ATM deficiency causes cerebellar degeneration, we hypothesized that specific vulnerabilities of cerebellar microglia underlie the etiology of A-T. Our hypothesis is based on the recent finding that dysfunction of glial cells affect a variety of process leading to impaired neuronal functionality (Song et al., 2019). Whereas astrocytes and neurons descend from the neural tube, microglia originate from the hematopoietic system, invade the brain at early embryonic stage, and become the innate immune cells of the central nervous system and important participants in development of synaptic plasticity. Here we demonstrate that microglia derived from Atm mouse cerebellum display accelerated cell migration and are severely impaired in phagocytosis, secretion of neurotrophic factors, and mitochondrial activity, suggestive of apoptotic processes. Interestingly, no microglial impairment was detected in Atm-deficient cerebral cortex, and Atm deficiency had less impact on astroglia than microglia. Collectively, our findings validate the roles of glial cells in cerebellar attrition in A-T.
共济失调毛细血管扩张症(A-T)是一种多系统常染色体隐性疾病,由 ATM 基因突变引起,其特征为小脑萎缩、进行性共济失调、免疫缺陷、男女不育、辐射敏感性、癌症易感性、生长迟缓、胰岛素抵抗性糖尿病和早衰。ATM 磷酸化超过 1500 种靶蛋白,这些靶蛋白参与细胞周期调控、DNA 修复、细胞凋亡、染色质结构调节以及其他细胞质和线粒体过程。为了更好地了解 ATM 缺陷导致小脑退行性变的机制,我们假设小脑小胶质细胞的特定脆弱性是 A-T 的病因基础。我们的假设基于最近的发现,即神经胶质细胞功能障碍会影响多种导致神经元功能受损的过程(Song 等人,2019 年)。星形胶质细胞和神经元来源于神经管,而小胶质细胞起源于造血系统,在胚胎早期侵入大脑,成为中枢神经系统的固有免疫细胞,并成为突触可塑性发育的重要参与者。在这里,我们证明了来自 Atm 小鼠小脑的小胶质细胞显示出加速的细胞迁移,并且在吞噬作用、神经营养因子分泌和线粒体活性方面严重受损,提示存在凋亡过程。有趣的是,在 Atm 缺陷的大脑皮层中未检测到小胶质细胞损伤,并且 Atm 缺陷对星形胶质细胞的影响小于小胶质细胞。总的来说,我们的研究结果证实了神经胶质细胞在 A-T 小脑萎缩中的作用。