Institute of Chemistry, The Minerva Centre for Bio-Hybrid Complex Systems, The Hebrew University of Jerusalem, Jerusalem, Israel.
Chemistry. 2022 Feb 16;28(9):e202103595. doi: 10.1002/chem.202103595. Epub 2021 Dec 22.
Mimicking photosynthesis using artificial systems, as a means for solar energy conversion and green fuel generation, is one of the holy grails of modern science. This perspective presents recent advances towards developing artificial photosynthetic systems. In one approach, native photosystems are interfaced with electrodes to yield photobioelectrochemical cells that transform light energy into electrical power. This is exemplified by interfacing photosystem I (PSI) and photosystem II (PSII) as an electrically contacted assembly mimicking the native Z-scheme, and by the assembly of an electrically wired PSI/glucose oxidase biocatalytic conjugate on an electrode support. Illumination of the functionalized electrodes led to light-induced generation of electrical power, or to the generation of photocurrents using glucose as the fuel. The second approach introduces supramolecular photosensitizer nucleic acid/electron acceptor complexes as functional modules for effective photoinduced electron transfer stimulating the subsequent biocatalyzed generation of NADPH or the Pt-nanoparticle-catalyzed evolution of molecular hydrogen. Application of the DNA machineries for scaling-up the photosystems is demonstrated. A third approach presents the integration of artificial photosynthetic modules into dynamic nucleic acid networks undergoing reversible reconfiguration or dissipative transient operation in the presence of auxiliary triggers. Control over photoinduced electron transfer reactions and photosynthetic transformations by means of the dynamic networks is demonstrated.
利用人工系统模拟光合作用,作为太阳能转换和绿色燃料生成的一种手段,是现代科学的圣杯之一。本观点介绍了开发人工光合作用系统的最新进展。在一种方法中,天然光合作用系统与电极相连,产生光电化学电池,将光能转化为电能。这可以通过将光合作用系统 I(PSI)和光合作用系统 II(PSII)作为模拟天然 Z 方案的电接触组装来实现,也可以通过将电连接的 PSI/葡萄糖氧化酶生物催化偶联物组装在电极支架上来实现。功能性电极的光照导致光诱导发电,或使用葡萄糖作为燃料产生光电流。第二种方法引入超分子光敏剂核酸/电子受体复合物作为有效光诱导电子转移的功能模块,刺激随后的生物催化生成 NADPH 或 Pt 纳米粒子催化的分子氢的演化。应用 DNA 机器来扩大光合作用系统的规模。第三种方法提出了将人工光合作用模块集成到动态核酸网络中,在辅助触发剂存在下进行可逆重构或耗散瞬态操作。通过动态网络来控制光诱导电子转移反应和光合作用转化。