文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

靶向肝脏递送熊果酸纳米结构脂质载体治疗肝纤维化。

Liver-targeted delivery of asiatic acid nanostructured lipid carrier for the treatment of liver fibrosis.

机构信息

Institute of Materia Medica, Hangzhou Medical College, Hangzhou, China.

School of Biological Engineering, Hangzhou Medical College, Hangzhou, China.

出版信息

Drug Deliv. 2021 Dec;28(1):2534-2547. doi: 10.1080/10717544.2021.2008054.


DOI:10.1080/10717544.2021.2008054
PMID:34854788
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8648005/
Abstract

Liver fibrosis is a major global health concern. Management of chronic liver disease is severely restricted in clinics due to ineffective treatment approaches. However, a lack of targeted therapy may aggravate this condition. Asiatic acid (AA), a pentacyclic triterpenoid acid, can effectively protect the liver from hepatic disorders. However, the pharmaceutical application of AA is limited by low oral bioavailability and poor targeting efficiency. This study synthesized a novel liver-targeting material from PEG-SA, chemically linked to ursodeoxycholic acid (UA), and utilized it to modify AA nanostructured lipid carriers (UP-AA-NLC) with enhanced targeting and improved efficacy. The formulation of UP-AA-NLC was optimized via the Box-Behnken Experimental Design (BBD) and characterized by size, zeta potential, TEM, DSC, and XRD. Furthermore, antifibrotic activity and proliferation of AA and NLCs were assessed in LX-2 cells. The addition of UP-AA-NLC significantly stimulated the TGF-beta1-induced expression of α-SMA, FN1, and Col I α1. near-infrared fluorescence imaging and distribution trials in rats demonstrated that UP-AA-NLC could significantly improve oral absorption and liver-targeting efficiency. Oral UP-AA-NLC greatly alleviated carbon tetrachloride-induced liver injury and fibrosis in rats in a dosage-dependent manner, as reflected by serum biochemical parameters (AST, ALT, and ALB), histopathological features (H&E and Masson staining), and antioxidant activity parameters (SOD and MDA). Also, treatment with UP-AA-NLC lowered liver hydroxyproline levels, demonstrating a reduction of collagen accumulation in the fibrotic liver. Collectively, optimized UP-AA-NLC has potential application prospects in liver-targeted therapy and holds great promise as a drug delivery system for treating liver diseases.

摘要

肝纤维化是一个全球性的健康问题。由于缺乏有效的治疗方法,慢性肝病的临床管理受到严重限制。然而,缺乏靶向治疗可能会加重这种情况。齐墩果酸(AA)是一种五环三萜酸,能有效保护肝脏免受肝损伤。然而,AA 的药物应用受到口服生物利用度低和靶向效率差的限制。本研究从聚乙二醇琥珀酸(PEG-SA)合成了一种新型的肝靶向材料,通过化学方法与熊去氧胆酸(UA)相连,并用其修饰具有增强靶向性和提高疗效的 AA 纳米结构脂质载体(UP-AA-NLC)。通过 Box-Behnken 实验设计(BBD)优化了 UP-AA-NLC 的配方,并通过粒径、Zeta 电位、TEM、DSC 和 XRD 进行了表征。此外,还评估了 AA 和 NLC 在 LX-2 细胞中的抗纤维化活性和增殖作用。加入 UP-AA-NLC 可显著刺激 TGF-β1 诱导的α-SMA、FN1 和 Col I α1 的表达。在大鼠体内的近红外荧光成像和分布试验表明,UP-AA-NLC 可显著提高口服吸收和肝靶向效率。口服 UP-AA-NLC 可显著改善大鼠四氯化碳诱导的肝损伤和纤维化,血清生化参数(AST、ALT 和 ALB)、组织病理学特征(H&E 和 Masson 染色)和抗氧化活性参数(SOD 和 MDA)均有所改善。此外,UP-AA-NLC 治疗可降低肝羟脯氨酸水平,表明纤维化肝脏中胶原积累减少。综上所述,优化后的 UP-AA-NLC 在肝靶向治疗中具有潜在的应用前景,作为一种治疗肝脏疾病的药物传递系统具有广阔的前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f76/8648005/e35af0846958/IDRD_A_2008054_F0013_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f76/8648005/9f1590e5f7b3/IDRD_A_2008054_F0001_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f76/8648005/3401a5c975b1/IDRD_A_2008054_F0002_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f76/8648005/5d76b10f74dd/IDRD_A_2008054_F0003_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f76/8648005/5ed88e243fe7/IDRD_A_2008054_F0004_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f76/8648005/75cc9b9f0af5/IDRD_A_2008054_F0005_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f76/8648005/55cfe01f5563/IDRD_A_2008054_F0006_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f76/8648005/f6a18d8bf7e1/IDRD_A_2008054_F0007_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f76/8648005/bde49ac5161d/IDRD_A_2008054_F0008_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f76/8648005/b6a86d28371b/IDRD_A_2008054_F0009_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f76/8648005/8623e1227058/IDRD_A_2008054_F0010_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f76/8648005/e34252cd5b00/IDRD_A_2008054_F0011_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f76/8648005/c1034d3eddaf/IDRD_A_2008054_F0012_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f76/8648005/e35af0846958/IDRD_A_2008054_F0013_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f76/8648005/9f1590e5f7b3/IDRD_A_2008054_F0001_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f76/8648005/3401a5c975b1/IDRD_A_2008054_F0002_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f76/8648005/5d76b10f74dd/IDRD_A_2008054_F0003_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f76/8648005/5ed88e243fe7/IDRD_A_2008054_F0004_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f76/8648005/75cc9b9f0af5/IDRD_A_2008054_F0005_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f76/8648005/55cfe01f5563/IDRD_A_2008054_F0006_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f76/8648005/f6a18d8bf7e1/IDRD_A_2008054_F0007_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f76/8648005/bde49ac5161d/IDRD_A_2008054_F0008_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f76/8648005/b6a86d28371b/IDRD_A_2008054_F0009_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f76/8648005/8623e1227058/IDRD_A_2008054_F0010_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f76/8648005/e34252cd5b00/IDRD_A_2008054_F0011_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f76/8648005/c1034d3eddaf/IDRD_A_2008054_F0012_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f76/8648005/e35af0846958/IDRD_A_2008054_F0013_C.jpg

相似文献

[1]
Liver-targeted delivery of asiatic acid nanostructured lipid carrier for the treatment of liver fibrosis.

Drug Deliv. 2021-12

[2]
Preparation and evaluation of PEGylated asiatic acid nanostructured lipid carriers on anti-fibrosis effects.

Drug Dev Ind Pharm. 2020-1-10

[3]
[Oral absorption of asiatic acid nanoparticles modified with PEG].

Zhongguo Zhong Yao Za Zhi. 2017-7

[4]
Asiatic acid inhibits liver fibrosis by blocking TGF-beta/Smad signaling in vivo and in vitro.

PLoS One. 2012-2-7

[5]
Development and optimization of sulforaphane-loaded nanostructured lipid carriers by the Box-Behnken design for improved oral efficacy against cancer: in vitro, ex vivo and in vivo assessments.

Artif Cells Nanomed Biotechnol. 2018

[6]
Lipid based nanocarrier system for the potential oral delivery of decitabine: formulation design, characterization, ex vivo, and in vivo assessment.

Int J Pharm. 2014-12-30

[7]
Design and evaluation of lipoprotein resembling curcumin-encapsulated protein-free nanostructured lipid carrier for brain targeting.

Int J Pharm. 2016-4-16

[8]
[Response surface method for optimization of asiatic acid nanoparticles modified with PEG and its enhancing effects on intestinal absorption].

Zhongguo Zhong Yao Za Zhi. 2016-9

[9]
G5-PEG PAMAM dendrimer incorporating nanostructured lipid carriers enhance oral bioavailability and plasma lipid-lowering effect of probucol.

J Control Release. 2015-5-21

[10]
Size-exclusive effect of nanostructured lipid carriers on oral drug delivery.

Int J Pharm. 2016-9-10

引用本文的文献

[1]
Integrated oral microgel system ameliorates renal fibrosis by hitchhiking co-delivery and targeted gut flora modulation.

J Nanobiotechnology. 2024-6-1

[2]
Asiatic acid cyclodextrin inclusion micro-cocrystal for insoluble drug delivery and acute lung injury therapy enhancement.

J Nanobiotechnology. 2024-3-17

[3]
Pharmacokinetics and tumor delivery of nanoparticles.

J Drug Deliv Sci Technol. 2023-5

[4]
Anti-Liver Fibrosis Role of miRNA-96-5p via Targeting FN1 and Inhibiting ECM-Receptor Interaction Pathway.

Appl Biochem Biotechnol. 2023-11

[5]
Effect of modification of polystyrene nanoparticles with different bile acids on their oral transport.

Nanomedicine. 2023-2

[6]
The Chinese herb Styrax triggers pharmacokinetic herb-drug interactions inhibiting intestinal CYP3A.

Front Pharmacol. 2022-8-29

[7]
Recent Advances Regarding the Molecular Mechanisms of Triterpenic Acids: A Review (Part I).

Int J Mol Sci. 2022-7-13

本文引用的文献

[1]
Primaquine Loaded Solid Lipid Nanoparticles (SLN), Nanostructured Lipid Carriers (NLC), and Nanoemulsion (NE): Effect of Lipid Matrix and Surfactant on Drug Entrapment, in vitro Release, and ex vivo Hemolysis.

AAPS PharmSciTech. 2021-9-29

[2]
Double Optimization of Rivastigmine-Loaded Nanostructured Lipid Carriers (NLC) for Nose-to-Brain Delivery Using the Quality by Design (QbD) Approach: Formulation Variables and Instrumental Parameters.

Pharmaceutics. 2020-6-28

[3]
Ursodeoxycholic acid alleviates experimental liver fibrosis involving inhibition of autophagy.

Life Sci. 2019-12-13

[4]
Preparation and evaluation of PEGylated asiatic acid nanostructured lipid carriers on anti-fibrosis effects.

Drug Dev Ind Pharm. 2020-1-10

[5]
Transporter-Targeted Bile Acid-Camptothecin Conjugate for Improved Oral Absorption.

Chem Pharm Bull (Tokyo). 2019-10-1

[6]
Large-scale production of ursodeoxycholic acid from chenodeoxycholic acid by engineering 7α- and 7β-hydroxysteroid dehydrogenase.

Bioprocess Biosyst Eng. 2019-6-1

[7]
New glucose oxidase-immobilized stimuli-responsive dextran nanoparticles for insulin delivery.

Int J Biol Macromol. 2018-11-16

[8]
Asiatic acid attenuates CCl-induced liver fibrosis in rats by regulating the PI3K/AKT/mTOR and Bcl-2/Bax signaling pathways.

Int Immunopharmacol. 2018-4-24

[9]
Lipid nanoparticles of zaleplon for improved oral delivery by Box-Behnken design: optimization, in vitro and in vivo evaluation.

Drug Dev Ind Pharm. 2017-7

[10]
1. Commentary on an exponential model for the analysis of drug delivery: Original research article: a simple equation for description of solute release: I II. Fickian and non-Fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs, 1987.

J Control Release. 2014-9-28

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索