Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany.
Angew Chem Int Ed Engl. 2022 Mar 7;61(11):e202114619. doi: 10.1002/anie.202114619. Epub 2022 Feb 2.
Since early 2020, scientists have strived to find an effective solution to fight SARS-CoV-2, in particular by developing reliable vaccines that inhibit the spread of the disease and repurposing drugs for combatting its effects on the human body. The antiviral prodrug Remdesivir is still the most widely used therapeutic during the early stages of the infection. However, the current synthetic routes rely on the use of protecting groups, air-sensitive reagents, and cryogenic conditions, thus impeding a cost-efficient supply to patients. We have, therefore, focused on the development of a straightforward, direct addition of (hetero)arenes to unprotected sugars. Here we report a silylium-catalyzed and completely stereoselective C-glycosylation that initially yields the open-chain polyols, which can be selectively cyclized to provide either the kinetic α-furanose or the thermodynamically favored β-anomer. The method significantly expedites the synthesis of Remdesivir precursor GS-441524 after a subsequent Mn-catalyzed C-H oxidation and deoxycyanation.
自 2020 年初以来,科学家们一直致力于寻找一种有效的方法来对抗 SARS-CoV-2,特别是通过开发可靠的疫苗来抑制疾病的传播,并重新利用药物来对抗其对人体的影响。抗病毒前药瑞德西韦仍然是感染早期最广泛使用的治疗药物。然而,目前的合成路线依赖于使用保护基团、对空气敏感的试剂和低温条件,从而阻碍了向患者提供具有成本效益的供应。因此,我们专注于开发一种直接、直接将(杂)芳基加到未保护的糖上的方法。在这里,我们报告了一种硅介导的、完全立体选择性的 C-糖苷化反应,该反应最初生成开链多元醇,然后可以选择性地环化得到动力学上有利的α-呋喃糖或热力学上有利的β-异构体。该方法在随后的 Mn 催化的 C-H 氧化和去氰化后,显著加快了瑞德西韦前体 GS-441524 的合成。