Suppr超能文献

通过级联生物催化选择性和原子经济重排尿苷生产假尿苷。

A selective and atom-economic rearrangement of uridine by cascade biocatalysis for production of pseudouridine.

机构信息

Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, A-8010, Graz, Austria.

Austrian Centre of Industrial Biotechnology (acib), Krenngasse 37, A-8010, Graz, Austria.

出版信息

Nat Commun. 2023 Apr 20;14(1):2261. doi: 10.1038/s41467-023-37942-7.

Abstract

As a crucial factor of their therapeutic efficacy, the currently marketed mRNA vaccines feature uniform substitution of uridine (U) by the corresponding C-nucleoside, pseudouridine (Ψ), in 1-N-methylated form. Synthetic supply of the mRNA building block (1-N-Me-Ψ-5'-triphosphate) involves expedient access to Ψ as the principal challenge. Here, we show selective and atom-economic 1N-5C rearrangement of β-D-ribosyl on uracil to obtain Ψ from unprotected U in quantitative yield. One-pot cascade transformation of U in four enzyme-catalyzed steps, via D-ribose (Rib)-1-phosphate, Rib-5-phosphate (Rib5P) and Ψ-5'-phosphate (ΨMP), gives Ψ. Coordinated function of the coupled enzymes in the overall rearrangement necessitates specific release of phosphate from the ΨMP, but not from the intermediary ribose phosphates. Discovery of Yjjg as ΨMP-specific phosphatase enables internally controlled regeneration of phosphate as catalytic reagent. With driving force provided from the net N-C rearrangement, the optimized U reaction yields a supersaturated product solution (∼250 g/L) from which the pure Ψ crystallizes (90% recovery). Scale up to 25 g isolated product at enzyme turnovers of ∼10mol/mol demonstrates a robust process technology, promising for Ψ production. Our study identifies a multistep rearrangement reaction, realized by cascade biocatalysis, for C-nucleoside synthesis in high efficiency.

摘要

作为其治疗功效的关键因素,目前市售的 mRNA 疫苗的特征在于,在 1-N-甲基化形式下,将尿嘧啶(U)均匀替换为相应的 C-核苷,假尿嘧啶(Ψ)。mRNA 构建块(1-N-Me-Ψ-5'-三磷酸)的合成供应涉及到作为主要挑战的Ψ的便捷获取。在这里,我们展示了β-D-核糖基上尿嘧啶的选择性和原子经济性的 1N-5C 重排,从而从未保护的 U 中以定量产率获得 Ψ。通过 D-核糖(Rib)-1-磷酸、Rib-5-磷酸(Rib5P)和 Ψ-5'-磷酸(ΨMP),在四个酶催化步骤中,U 可一步一锅式转化为四酶催化级联转化,从而生成 Ψ。在整个重排过程中,偶联酶的协调功能需要从 ΨMP 特异性释放磷酸,但不从中间核糖磷酸释放。发现 Yjjg 是 ΨMP 特异性磷酸酶,使磷酸盐能够作为催化试剂进行内部控制再生。在净 N-C 重排提供的驱动力下,优化后的 U 反应从过饱和产物溶液(约 250g/L)中得到纯 Ψ结晶(回收 90%)。在酶转化率约为 10mol/mol 的情况下,放大至 25g 分离产物证明了该过程具有强大的技术,有望用于 Ψ 的生产。我们的研究确定了一种多步重排反应,通过级联生物催化实现,可高效合成 C-核苷。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7395/10119108/ef3b3853bdf2/41467_2023_37942_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验