Suppr超能文献

基于U-Net和机器学习的时间序列增长预测模型 于……

Time-Series Growth Prediction Model Based on U-Net and Machine Learning in .

作者信息

Chang Sungyul, Lee Unseok, Hong Min Jeong, Jo Yeong Deuk, Kim Jin-Baek

机构信息

Radiation Breeding Research Team, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), Jeongeup-si, South Korea.

Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung-si, South Korea.

出版信息

Front Plant Sci. 2021 Nov 11;12:721512. doi: 10.3389/fpls.2021.721512. eCollection 2021.

Abstract

Yield prediction for crops is essential information for food security. A high-throughput phenotyping platform (HTPP) generates the data of the complete life cycle of a plant. However, the data are rarely used for yield prediction because of the lack of quality image analysis methods, yield data associated with HTPP, and the time-series analysis method for yield prediction. To overcome limitations, this study employed multiple deep learning (DL) networks to extract high-quality HTTP data, establish an association between HTTP data and the yield performance of crops, and select essential time intervals using machine learning (ML). The images of were taken 12 times under environmentally controlled HTPP over 23 days after sowing (DAS). First, the features from images were extracted using DL network U-Net with SE-ResXt101 encoder and divided into early (15-21 DAS) and late (∼21-23 DAS) pre-flowering developmental stages using the physiological characteristics of the plant. Second, the late pre-flowering stage at 23 DAS can be predicted using the ML algorithm XGBoost, based only on a portion of the early pre-flowering stage (17-21 DAS). This was confirmed using an additional biological experiment ( < 0.01). Finally, the projected area (PA) was estimated into fresh weight (FW), and the correlation coefficient between FW and predicted FW was calculated as 0.85. This was the first study that analyzed time-series data to predict the FW of related but different developmental stages and predict the PA. The results of this study were informative and enabled the understanding of the FW of or yield of leafy plants and total biomass consumed in vertical farming. Moreover, this study highlighted the reduction of time-series data for examining interesting traits and future application of time-series analysis in various HTPPs.

摘要

作物产量预测是保障粮食安全的重要信息。高通量表型分析平台(HTPP)可生成植物完整生命周期的数据。然而,由于缺乏高质量图像分析方法、与HTPP相关的产量数据以及产量预测的时间序列分析方法,这些数据很少用于产量预测。为克服这些限制,本研究采用多个深度学习(DL)网络来提取高质量的HTTP数据,建立HTTP数据与作物产量表现之间的关联,并使用机器学习(ML)选择关键时间间隔。在播种后23天(DAS)内,在环境可控的HTPP下对[作物名称]的图像进行了12次拍摄。首先,使用带有SE-ResXt101编码器的DL网络U-Net从图像中提取特征,并根据[作物名称]的生理特征将其分为开花前早期(15 - 21 DAS)和晚期(约21 - 23 DAS)发育阶段。其次,仅基于开花前早期的一部分(17 - 21 DAS),使用ML算法XGBoost可以预测23 DAS时的开花前晚期阶段。这通过额外的生物学实验得到了证实(<0.01)。最后,将投影面积(PA)估算为鲜重(FW),计算出FW与预测FW之间的相关系数为0.85。这是第一项分析时间序列数据以预测相关但不同发育阶段的FW并预测PA的研究。本研究结果提供了丰富信息,有助于理解[作物名称]的FW或叶菜类植物的产量以及垂直种植中消耗的总生物量。此外,本研究强调了减少用于检查有趣性状的时间序列数据以及时间序列分析在各种HTPP中的未来应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1fa/8631871/d62de61e7edc/fpls-12-721512-g002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验