Zhang Wenrui, Zhang Jie, Cheng Shaobo, Rouleau Christopher M, Kisslinger Kim, Zhang Lihua, Zhu Yimei, Ward Thomas Z, Eres Gyula
Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China.
Nanomicro Lett. 2021 Dec 2;14(1):2. doi: 10.1007/s40820-021-00752-x.
Engineering oxygen vacancy formation and distribution is a powerful route for controlling the oxygen sublattice evolution that affects diverse functional behavior. The controlling of the oxygen vacancy formation process is particularly important for inducing topotactic phase transitions that occur by transformation of the oxygen sublattice. Here we demonstrate an epitaxial nanocomposite approach for exploring the spatial control of topotactic phase transition from a pristine perovskite phase to an oxygen vacancy-ordered brownmillerite (BM) phase in a model oxide LaSrMnO (LSMO). Incorporating a minority phase NiO in LSMO films creates ultrahigh density of vertically aligned epitaxial interfaces that strongly influence the oxygen vacancy formation and distribution in LSMO. Combined structural characterizations reveal strong interactions between NiO and LSMO across the epitaxial interfaces leading to a topotactic phase transition in LSMO accompanied by significant morphology evolution in NiO. Using the NiO nominal ratio as a single control parameter, we obtain intermediate topotactic nanostructures with distinct distribution of the transformed LSMO-BM phase, which enables systematic tuning of magnetic and electrical transport properties. The use of self-assembled heterostructure interfaces by the epitaxial nanocomposite platform enables more versatile design of topotactic phase structures and correlated functionalities that are sensitive to oxygen vacancies.
工程化氧空位的形成和分布是控制影响多种功能行为的氧亚晶格演化的有效途径。控制氧空位的形成过程对于诱导由氧亚晶格转变引发的拓扑相变尤为重要。在此,我们展示了一种外延纳米复合材料方法,用于探索在模型氧化物LaSrMnO(LSMO)中从原始钙钛矿相到氧空位有序的褐锰矿(BM)相的拓扑相变的空间控制。在LSMO薄膜中掺入少量相NiO会产生超高密度的垂直排列外延界面,这对LSMO中的氧空位形成和分布有强烈影响。综合结构表征揭示了NiO与LSMO在外延界面上的强相互作用,导致LSMO发生拓扑相变,并伴随NiO中显著的形态演变。以NiO标称比作为单一控制参数,我们获得了具有不同转变LSMO - BM相分布的中间拓扑纳米结构,这使得能够系统地调节磁和电输运性质。通过外延纳米复合材料平台使用自组装异质结构界面,能够更灵活地设计对氧空位敏感的拓扑相结构和相关功能。